ﻻ يوجد ملخص باللغة العربية
The X-ray flares of NGC 5905, RX J1242.6-1119A, and RX J1624.9+7554 observed by Chandra in 2001 and 2002 have been suggested as the candidate tidal disruption events. The distinct features observed from these events may be used to determine the type of a star tidally disrupted by a massive black hole. We investigate these three events, focusing on the differences for the tidal disruption of a giant star and a main sequence, resulted from their different relation between the mass and the radius. We argue that their X-ray flare properties could be modeled by the partial stripping of the outer layers of a solar type star. The tidal disruption of a giant star is excluded completely. This result may be useful for understanding the growth of a supermassive black hole by capturing stars, versus the growth mode through continuous mass accretion.
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs.
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probin
Recent claimed detections of tidal disruption events (TDEs) in multi-wavelength data have opened potential new windows into the evolution and properties of otherwise dormant supermassive black holes (SMBHs) in the centres of galaxies. At present, the
Optical transient surveys have led to the discovery of dozens of stellar tidal disruption events (TDEs) by massive black hole in the centers of galaxies. Despite extensive searches, X-ray follow-up observations have produced no or only weak X-ray det