ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical masses of ultra-compact dwarf galaxies in Fornax

68   0   0.0 ( 0 )
 نشر من قبل Michael Hilker
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. We determine masses and mass-to-light ratios of five ultra-compact dwarf galaxies and one dwarf elliptical nucleus in the Fornax cluster from high resolution spectroscopy. Methods. Velocity dispersions were derived from selected wavelength regions using a direct-fitting method. To estimate the masses of the UCDs a new modelling program has been developed that allows a choice of different representations of the surface brightness profile (i.e. Nuker, Sersic or King laws) and corrects the observed velocity dispersions for observational parameters (i.e. seeing, slit size). Results. The observed velocity dispersions range between 22 and 30 km/s. The resulting masses are between 1.8 and 9.5x10^7M_sun. These, as well as the central and global projected velocity dispersions, were derived from the generalized King model which turned out to give the most stable results. The masses of two UCDs, that are best fitted by a two-component profile, were derived from a combined King+Sersic model. The mass-to-light ratios of the Fornax UCDs range between 3 and 5 (M/L_V)_sun. Within 1-2 half-mass radii dark matter is not dominating UCDs. Conclusions. We show that the mass-to-light ratios of UCDs in Fornax are consistent with those expected for pure stellar populations. Thus UCDs seem to be the result of cluster formation processes within galaxies rather than being compact dark matter dominated substructures themselves. Whether UCDs gained their mass in super-star cluster complexes of mergers or in nuclear star cluster formation processes remains an open question. It appears, however, clear that star clusters more massive than about 5times10^6M_sun exhibit a more complex formation history than the less massive `ordinary globular clusters.

قيم البحث

اقرأ أيضاً

By utilising the large multi-plexing advantage of the 2dF spectrograph on the Anglo-Australian Telescope, we have been able to obtain a complete spectroscopic sample of all objects in a predefined magnitude range, 16.5<Bj<19.7, regardless of morpholo gy, in an area towards the centre of the Fornax Cluster of galaxies. Among the unresolved or marginally resolved targets we have found five objects which are actually at the redshift of the Fornax Cluster, i.e. they are extremely compact dwarf galaxies or extremely large star clusters. All five have absorption line spectra. With intrinsic sizes less than 1.1 arc second HWHM (corresponding to approximately 100 pc at the distance of the cluster), they are more compact and significantly less luminous than other known compact dwarf galaxies, yet much brighter than any globular cluster. In this letter we present new ground based optical observations of these enigmatic objects. In addition to having extremely high central surface brightnesses, these objects show no evidence of any surrounding low surface brightness envelopes down to much fainter limits than is the case for, e.g., nucleated dwarf ellipticals. Thus, if they are not merely the stripped remains of some other type of galaxy, then they appear to have properties unlike any previously known type of stellar system.
We present a detailed analysis of two-band HST/ACS imaging of 21 ultra-compact dwarf (UCD) galaxies in the Virgo and Fornax Clusters. The aim of this work is to test two formation hypotheses for UCDs--whether they are bright globular clusters (GCs) o r threshed early-type dwarf galaxies--by comparison of UCD structural parameters and colors with GCs and galaxy nuclei. We find that the UCD surface brightness profiles can be described by a range of models and that the luminous UCDs can not be described by standard King models with tidal cutoffs as they have extended outer halos. This is not expected from traditional King models of GCs, but is consistent with recent results for massive GCs. The total luminosities, colors and sizes of the UCDs are consistent with them being either luminous GCs or threshed nuclei of both early-type and late-type galaxies (not just early-type dwarfs). For the most luminous UCDs we estimate color gradients over a limited range of radius. These are systematically positive in the sense of getting redder outwards: mean Delta(F606W-F814W)=0.14 mag per 100 pc with rms=0.06 mag per 100 pc. The positive gradients found in the bright UCDs are consistent with them being either bright GCs or threshed early-type dwarf galaxies (except VUCD3). In contrast to the above results we find a very significant difference in the sizes of UCDs and early-type galaxy nuclei: the effective radii of UCDs are 2.2 times larger than those of early-type galaxy nuclei at the same luminosity. This result suggests an important test can be made of the threshing hypothesis by simulating the process and predicting what size increase is expected.
We have used the 2dF spectrograph on the Anglo-Australian Telescope to obtain a complete spectroscopic sample of all objects in the magnitude range, Bj= 16.5 to 19.8, regardless of morphology, in an area centred on the Fornax Cluster of galaxies. Amo ng the unresolved targets are five objects which are members of the Fornax Cluster. They are extremely compact stellar systems with scale lengths less than 40 parsecs. These ultra-compact dwarfs are unlike any known type of stellar system, being more compact and significantly less luminous than other compact dwarf galaxies, yet much brighter than any globular cluster.
89 - Riccardo Scarpa 2005
The properties of the recently discovered Ultra-Compact Dwarf Galaxies (UCDs) show that their internal acceleration of gravity is everywhere above a0, the MOdified Newtonian Dynamics (MOND) constant of gravity. MOND therefore makes the strong predict ion that no mass discrepancy should be observed for this class of objects. This is confirmed by the few UCDs for which virial masses were derived. We argue that UCD galaxies represent a suitable test-bench for the theory, in the sense that even a single UCD galaxy showing evidence for dark matter would seriously question the validity of MOND.
We aim at quantifying the specific frequency of UCDs in a range of environments and at relating this to the frequency of globular clusters (GCs) and potential progenitor dwarf galaxies. Are the frequencies of UCDs consistent with being the bright tai l of the GC luminosity function (GCLF)? We propose a definition for the specific frequency of UCDs, S_{N,UCD}=N_{UCD}*10^{0.4*(M_{V,host}-M_{V,0})}*c_{w}. The parameter M_{V,0} is the zeropoint of the definition, chosen such that the specific frequency of UCDs is the same as those of globular clusters, S_{N,GC}, if UCDs follow a simple extrapolation of the GCLF. The parameter c_{w} is a correction term for the GCLF width sigma. We apply our definition of S_{N,UCD} to results of spectroscopic UCD searches in the Fornax, Hydra and Centaurus galaxy clusters, two Hickson Compact Groups, and the Local Group. This includes a large database of 180 confirmed UCDs in Fornax. We find that the specific frequencies derived for UCDs match those of GCs very well, to within 10-50%. The ratio {S_{N,UCD}}/{S_{N,GC}} is 1.00 +- 0.44 for the four environments Fornax, Hydra, Centaurus, and Local Group, which have S_{N,GC} values. This good match also holds for individual giant galaxies in Fornax and in the Fornax intracluster-space. The error ranges of the derived UCD specific frequencies in the various environments then imply that not more than 50% of UCDs were formed from dwarf galaxies. We show that such a scenario would require >90% of primordial dwarfs in galaxy cluster centers (<100 kpc) to have been stripped of their stars. We conclude that the number counts of UCDs are fully consistent with them being the bright tail of the GC population. From a statistical point of view there is no need to invoke an additional formation channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا