ترغب بنشر مسار تعليمي؟ اضغط هنا

Broad-line AGNs with Candidate Intermediate-mass Black holes in the Sloan Digital Sky Survey

68   0   0.0 ( 0 )
 نشر من قبل Xiaobo Dong
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xiaobo Dong




اسأل ChatGPT حول البحث

We have conducted a systematic search of AGNs with IMBHs from the SDSS DR4. As results we found 245 candidates of broad-line AGN with M_{BH}<10^6 Msun estimated from the luminosity and width of the broad Halpha component. Compared to the pioneer Greene & Ho (2004) sample of 19 IMBH AGNs, our sample has improved in covering a larger range of the Eddington ratio, as well as black hole mass and redshift, taking the advantage of our AGN-galaxy spectral decomposition algorithm. Among these, thirty-six have L_{bol}/L_{Edd} < 0.1, hinting that a significant fraction of IMBHs might exist with weak or no nuclear activity.



قيم البحث

اقرأ أيضاً

We present the observed fraction of galaxies with an Active Galactic Nucleus (AGN) as a function of environment in the Early Data Release of the Sloan Digital Sky Survey (SDSS). Using 4921 galaxies between 0.05 <= z <= 0.095, and brighter than M_r* = -20.0 (or M* +1.45), we find at least ~ 20% of these galaxies possess an unambiguous detection of an AGN, but this fraction could be as high as ~40% after we model the ambiguous emission line galaxies in our sample. We have studied the environmental dependence of galaxies using the the distance to the 10^th nearest neighbor. As expected, we observe that the fraction of star--forming galaxies decreases with density, while the fraction of passive galaxies increases with density. In contrast, the fraction of galaxies with an AGN remains constant from the cores of galaxy clusters to the rarefied field population. We conclude that the presence of an AGN is independent of the disk component of a galaxy. Our analyses are robust against measurement error, definition of an AGN, aperture bias, stellar absorption, survey geometry and signal--to--noise. Our observations are consistent with the hypothesis that a supermassive black hole resides in the bulge of all massive galaxies and ~40% of these black holes are seen as AGNs in our sample. A high fraction of local galaxies with an AGN suggests that either the mean lifetime of these AGNs is longer than previously thought (>10^8 years), or that the AGN burst more often than expected; ~40 times over the redshift range of our sample.
We have examined the radial velocity data for stars spectroscopically observed by the Sloan Digital Sky Survey (SDSS) more than once to investigate the incidence of spectroscopic binaries, and to evaluate the accuracy of the SDSS stellar radial veloc ities. We find agreement between the fraction of stars with significant velocity variations and the expected fraction of binary stars in the halo and thick disk populations. The observations produce a list of 675 possible new spectroscopic binary stars and orbits for eight of them.
We present a time-variability analysis of 29 broad absorption line quasars (BALQSOs) observed in two epochs by the Sloan Digital Sky Survey (SDSS). These spectra are selected from a larger sample of BALQSOs with multiple observations by virtue of exh ibiting a broad CIV $lambda$1549 absorption trough separated from the rest frame of the associated emission peak by more than 3600 km s$^{-1}$. Detached troughs facilitate higher precision variability measurements, since the measurement of the absorption in these objects is not complicated by variation in the emission line flux. We have undertaken a statistical analysis of these detached-trough BALQSO spectra to explore the relationships between BAL features that are seen to vary and the dynamics of emission from the quasar central engine. We have measured variability within our sample, which includes three strongly variable BALs. We have also verified that the statistical behavior of the overall sample agrees with current model predictions and previous studies of BAL variability. Specifically, we observe that the strongest BAL variability occurs among the smallest equivalent width features and at velocities exceeding 12,000 km s$^{-1}$, as predicted by recent disk-wind modeling.
We report the discovery of rapid variations of a high-velocity CIV broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Proje ct, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4sigma) variability in the equivalent width of the broad (~4000 km/s wide) CIV trough on rest-frame timescales as short as 1.20 days (~29 hours), the shortest broad absorption line variability timescale yet reported. The equivalent width varied by ~10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n_e > 3.9 x 10^5 cm^-3. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.
We investigate the relationship between the mass of the central supermassive black hole, M_bh, and the host galaxy luminosity, L_gal, in a sample of quasars from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We use composite quasar spectr a binned by black hole mass and redshift to assess galaxy features that would otherwise be overwhelmed by noise in individual spectra. The black hole mass is calculated using the photoionization method, and the host galaxy luminosity is inferred from the depth of the Ca II H + K features in the composite spectra. We evaluate the evolution in the M_bh - L_gal relationship by examining the redshift dependence of Delta log M_bh, the offset in black hole mass from the local black hole - bulge relationship. There is little systematic trend in Delta log M_bh out to z = 0.8. Using the width of the [O III] emission line as a proxy for the stellar velocity dispersion, sigma_*, we find agreement of our derived host luminosities with the locally-observed Faber-Jackson relation. This supports the utility of the width of the [O III] line as a proxy for sigma_* in statistical studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا