ﻻ يوجد ملخص باللغة العربية
We present results of a multi-wavelength program to study the faint discrete X-ray source population discovered by Chandra in the Galactic Centre (GC). From IR imaging obtained with the VLT we identify candidate K-band counterparts to 75% of the X-ray sources in our sample. By combining follow-up VLT K-band spectroscopy of a subset of these candidate counterparts with the magnitude limits of our photometric survey, we suggest that only a small percentage of the sources are HMXBs, while the majority are likely to be canonical LMXBs and CVs at the distance of the GC. In addition, we present our discovery of highly structured small-scale (5-15) extinction towards the Galactic Centre. This is the finest-scale extinction study of the Galactic Centre to date. Finally, from these VLT observations we are able to place constraints on the stellar counterpart to the ``bursting pulsar GRO J1744-28.
We present the results of the identification of six objects from the ASCA Galactic center and Galactic plane surveys: AXJ173548-3207, AXJ173628-3141, AXJ1739.5-2910, AXJ1740.4-2856, AXJ1740.5-2937, AXJ1743.9-2846. Chandra, XMM-Newton, and XRT/Swift X
We investigate the serendipitous X-ray source population revealed in XMM-Newton observations targeted in the Galactic Plane within the region 315<l<45 and |b|<2.5 deg. Our study focuses on a sample of 2204 X-ray sources at intermediate to faint fluxe
A comparison of the XMM-Newton and Chandra Galactic Centre (GC) Surveys has revealed two faint X-ray transients with contrasting properties. The X-ray spectrum of XMM J174544-2913.0 shows a strong iron line with an equivalent width of ~2 keV, whereas
We report on a detailed study of the spectral and temporal properties of the neutron star low mass X-ray binary SLX 1737-282, which is located only ~1degr away from Sgr A. The system is expected to have a short orbital period, even within the ultra-c
We present early results from the first IR imaging of the weak X-ray sources discovered in a recent Chandra survey towards the Galactic Centre. From our VLT observations we will identify likely counterparts to a sample of the hardest sources in order