ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic search for new SW Sextantis stars in the 3-4 hour orbital period range -- I

58   0   0.0 ( 0 )
 نشر من قبل Pablo Rodriguez-Gil
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Rodriguez-Gil




اسأل ChatGPT حول البحث

[Abridged] We report on time-resolved optical spectroscopy of ten non-eclipsing nova-like cataclysmic variables in the orbital period range between 3 and 4 hours. Of the ten systems so far observed, HL Aqr, BO Cet, AH Men, V380 Oph, AH Pic, and LN UMa are identified as new members of the SW Sex class. We present improved orbital period measurements for HL Aqr (Porb = 3.254 +- 0.001 h) and V380 Oph (Porb = 3.69857 +- 0.00002 h). BO Cet and V380 Oph exhibit emission-line flaring with periodicities of 20 min and 47 min, respectively. The Halpha line of HL Aqr shows significant blueshifted absorption modulated at the orbital period. Similarly to the emission S-wave of the high-inclination SW Sex stars, this absorption S-wave has its maximum blue velocity at orbital phase ~0.5. We estimate an orbital inclination for HL Aqr in the range 19 < i < 27 deg, which is much lower than that of the emission-dominated, non-eclipsing SW Sex stars (i ~ 60-70 deg). This gives rise to the interesting possibility of many low-inclination nova-likes actually being SW Sex stars, but with a very different spectroscopic appearance as they show significant absorption. The increasing blueshifted absorption with decreasing inclination points to the existence of a mass outflow with significant vertical motion. This six new additions to the SW Sex class increase the presence of non-eclipsing systems to about one third of the whole SW Sex population, which therefore makes the requirement of eclipses as a defining criterion for SW Sex membership no longer valid. The statistics of the cataclysmic variable population in the vicinity of the upper period gap is also discussed.

قيم البحث

اقرأ أيضاً

[Abridged] We present time-series optical photometry of five new CVs identified by the Hamburg Quasar Survey. The eclipses observed in HS 0129+2933, HS 0220+0603, and HS 0455+8315 provided very accurate orbital periods of 3.35129827(65), 3.58098501(3 4), and 3.56937674(26) h, respectively. HS 0805+3822 shows grazing eclipses and has a likely orbital period of 3.2169(2) h. Time-resolved optical spectroscopy of the new CVs (with the exception of HS 0805+3822) is also presented. Radial velocity studies provided an orbital period of 3.55 h for HS 1813+6122, which allowed us to identify the observed photometric signal at 3.39 h as a negative superhump wave. The spectroscopic behaviour clearly identifies these new CVs as new SW Sextantis stars. These new additions increase the number of known SW Sex stars to 35. Almost 40 per cent of the total SW Sex population do not show eclipses, invalidating the requirement of eclipses as a defining characteristic of the class and the models based on a high orbital inclination geometry alone. On the other hand, the predominance of orbital periods in the narrow 3-4.5 h range is becoming more pronounced. In fact, almost half the CVs which populate the 3-4.5 h period interval are definite members of the class. These statistics are confirmed by our results from the Hamburg Quasar Survey CVs. Remarkably, 54 per cent of the Hamburg nova-like variables have been identified as SW Sex stars with orbital periods in the 3-4.5 h range. The observation of this pile-up of systems close to the upper boundary of the period gap is difficult to reconcile with the standard theory of CV evolution, as the SW Sex stars are believed to have the highest mass transfer rates among CVs. Finally, we review the full range of common properties that the SW Sex stars exhibit.
SW Sextantis systems are nova-like cataclysmic variables that have unusual spectroscopic properties, which are thought to be caused by an accretion geometry having part of the mass flux trajectory out of the orbital plane. Accretion onto a magnetic w hite dwarf is one of the proposed scenarios for these systems. To verify this possibility, we analysed photometric and polarimetric time-series data for a sample of six SW Sex stars. We report possible modulated circular polarization in BO Cet, SW Sex, and UU Aqr with periods of 11.1, 41.2 and 25.7 min, respectively, and less significant periodicities for V380 Oph at 22 min and V442 Oph at 19.4 min. We confirm previous results that LS Peg shows variable circular polarization. However, we determine a period of 18.8 min, which is different from the earlier reported value. We interpret these periods as the spin periods of the white dwarfs. Our polarimetric results indicate that 15% of the SW Sex systems have direct evidence of magnetic accretion. We also discuss SW Sex objects within the perspective of being magnetic systems, considering the latest findings about cataclysmic variables demography, formation and evolution.
We present optical photometry and spectroscopy of the new eclipsing Cataclysmic Variable MASTER OTJ192328.22+612413.5, discovered by the MASTER team. We find the orbital period to be P=0.16764612(5) day /4.023507(1) hour. The depth of the eclipse (2. 9$pm$0.1 mag) suggests that the system is nearly edge on, and modeling of the system confirms the inclination to be between 81.3-83.6 degree. The brightness outside of eclipse varies between observations, with a change of 1.6$pm$0.1 mag. Spectroscopy reveals double-peaked Balmer emission lines. By using spectral features matching a late M-type companion, we bound the distance to be 750$pm$250 pc, depending on the companion spectral type. The source displays 2 mag brightness changes on timescales of days. The amplitude of these changes, along with the spectrum at the faint state, suggest the system is possibly a dwarf nova. The lack of any high excitation HeII lines suggests this system is not magnetically dominated. The light curve in both quiescence and outburst resembles that of Lanning 386, implying MASTER OTJ192328.22+612413.5 is a possible cross between a dwarf nova and a SW Sextantis star.
409 - D. W. Hoard 2003
We present an analysis of the first far-ultraviolet observations of the SW Sextantis-type cataclysmic variable DW Ursae Majoris, obtained in November 2001 with the Far Ultraviolet Spectroscopic Explorer. The time-averaged spectrum of DW UMa shows a r ich assortment of emission lines (plus some contamination from interstellar absorption lines including molecular hydrogen). Accretion disk model spectra do not provide an adequate fit to the far-ultraviolet spectrum of DW UMa. We constructed a light curve by summing far-ultraviolet spectra extracted in 60-sec bins; this shows a modulation on the orbital period, with a maximum near photometric phase 0.93 and a minimum half an orbit later. No other periodic variability was found in the light curve data. We also extracted spectra in bins spanning 0.1 in orbital phase; these show substantial variation in the profile shapes and velocity shifts of the emission lines during an orbital cycle of DW UMa. Finally, we discuss possible physical models that can qualitatively account for the observed far-ultraviolet behavior of DW UMa, in the context of recent observational evidence for the presence of a self-occulting disk in DW UMa and the possibility that the SW Sex stars may be the intermediate polars with the highest mass transfer rates and/or weakest magnetic fields.
We present time-resolved spectroscopy and circular spectropolarimetry of the SW Sex star RX J1643.7+3402. We find significant polarisation levels exhibiting a variability at a period of 19.38 +- 0.39 min. In addition, emission-line flaring is found p redominantly at twice the polarimetric period. These two findings are strong evidences in favour of the presence of a magnetic white dwarf in the system. We interpret the measured periodicities in the context of our magnetic accretion model for SW Sex stars. In contrast with LS Pegasi -the first SW Sex star discovered to have modulated circular polarisation- the polarisation in RX J1643.7+3402 is suggested to vary at 2(omega - Omega), while the emission lines flare at (omega - Omega). However, a 2omega/omega interpretation cannot be ruled out. Together with LS Peg and V795 Her, RX J1643.7+3402 is the third SW Sex star known to exhibit modulated circular polarisation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا