ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing convection in stellar models using detached eclipsing binaries

84   0   0.0 ( 0 )
 نشر من قبل John Southworth
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fundamental properties of detached eclipsing binary stars can be measured very accurately, which could make them important objects for constraining the treatment of convection in theoretical stellar models. However, only four or five pieces of information can be found for the average system, which is not enough. We discuss studies of more interesting and useful objects: eclipsing binaries in clusters and eclipsing binaries with pulsating components.



قيم البحث

اقرأ أيضاً

Detached eclipsing binaries are remarkable systems to provide accurate fundamental stellar parameters. The fundamental stellar parameters and the metallicity values of stellar systems are needed to deeply understand the stellar evolution and formatio n. In this study, we focus on the detailed spectroscopic and photometric studies of three detached eclipsing binary systems, V372,And, V2080,Cyg, and CF,Lyn to obtain their accurate stellar, atmospheric parameters,and chemical compositions. An analysis of light and radial velocity curves was carried out to derive the orbital and stellar parameters. The disentangled spectra of component stars were obtained for the spectroscopic analysis. Final teff, logg, $xi$, vsini, parameters and the element abundances of component stars were derived by using the spectrum synthesis method. The fundamental stellar parameters were determined with a high certainty for V372,And, V2080,Cyg ($sim$$1-2$%) and with an accuracy for CF,Lyn ($sim$$2-6$%). The evolutionary status of the systems was examined and their ages were obtained. It was found that the component stars of V2080,Cyg have similar iron abundance which is slightly lower than solar iron abundance. Additionally, we showed that the primary component of CF,Lyn exhibits a non-spherical shape with its 80% Roche lobe filling factor. It could be estimated that CF,Lyn will start its first Roche overflow in the next 0.02,Gyr.
80 - D.-Y. Yang , L.-F. Li , Q.-W. Han 2020
The photometric and spectroscopic data for three double-lined detached eclipsing binaries were collected from the photometric and spectral surveys. The light and radial velocity curves of each binary system were simultaneously analyzed by using Wilso n-Devinney (WD) code, and the absolute physical and orbital parameters of these binaries were derived. The masses of both components of ASASSN-V J063123.82+192341.9 were found to be $M_1 = 1.088 pm 0.016$ and $M_2 = 0.883 pm 0.016 M_{odot}$; and those of ASAS J011416+0426.4 were determined to be $M_1 = 0.934 pm 0.046$ and $M_2 = 0.754 pm 0.043 M_{odot}$; those of MW Aur were derived to be $M_1 = 2.052 pm 0.196$ and $M_2 = 1.939 pm 0.193 M_{odot}$. At last, the evolutionary status of these detached binaries was discussed based on their absolute parameters and the theoretical stellar models. Keywords: Stars: binaries: eclipsing $-$ stars: fundamental parameters$-$ stars: evolution $-$ stars: individual: ASASSN-V J063123.82+192341.9, ASAS J011416+0426.4 and MW Aur
Accurate stellar parameters of stars in open clusters can help constrain models of stellar structure and evolution. Here we wish to determine the age and metallicity content of the open cluster NGC 2506. To this end we investigated three detached ecl ipsing binaries (DEBs; V2032, V4, and V5) for which we determined their masses and radii, as well as four red giant branch stars for which we determined their effective temperatures, surface gravities, and metallicities. Three of the stars in the DEBs have masses close to the cluster turn-off mass, allowing for extremely precise age determination. Comparing the values for the masses and radii of the binaries to BaSTI isochrones we estimated a cluster age of $2.01 pm 0.10$ Gyr. This does depend on the models used in the comparison, where we have found that the inclusion of convective core-overshooting is necessary to properly model the cluster. From red giant branch stars we determined values for the effective temperatures, the surface gravities, and the metallicities. From these we find a cluster metallicity of $-0.36 pm 0.10$ dex. Using this value and the values for the effective temperatures we determine the reddening to be E$(b - y) = 0.057 pm 0.004$ mag. Furthermore, we derived the distance to the cluster from Gaia parallaxes and found $3.101 pm 0.017$ kpc, and we have performed a radial velocity membership determination for stars in the field of the cluster. Finally, we report on the detection of oscillation signals in $gamma$ Dor and $delta$ Scuti members in data from the TESS mission, including the possible detection of solar-like oscillations in two of the red giants.
The accuracy of stellar masses and radii determined from asteroseismology is not known! We examine this issue for giant stars by comparing classical measurements of detached eclipsing binary systems (dEBs) with asteroseismic measurements from the Kep ler mission. For star clusters, we extrapolate measurements of dEBs in the turn-off region to the red giant branch and the red clump where we investigate the giants as an ensemble. For the field stars, we measure dEBs with an oscillating giant component. These measurements allow a comparison of masses and radii calculated from a classical eclipsing binary analysis to those calculated from asteroseismic scaling relations and/or other asteroseismic methods. Our first results indicate small but significant systematic differences between the classical and asteroseismic measurements. In this contribution we show our latest results and summarize the current status and future plans. We also stress the importance of realizing that for giant stars mass cannot always be translated to age, since an unknown fraction of these evolved through a blue straggler phase with mass transfer in a binary system. Rough estimates of how many such stars to expect are given based on our findings in the open clusters NGC6819 and NGC6791.
120 - D. R. Gies , R. A. Matson , Z. Guo 2015
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclips ing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا