ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of Linear Perturbations in f(R) Gravity

265   0   0.0 ( 0 )
 نشر من قبل Rachel Bean
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider predictions for structure formation from modifications to general relativity in which the Einstein-Hilbert action is replaced by a general function of the Ricci scalar. We work without fixing a gauge, as well as in explicit popular coordinate choices, appropriate for the modification of existing cosmological code. We present the framework in a comprehensive and practical form that can be directly compared to standard perturbation analyses. By considering the full evolution equations, we resolve perceived instabilities previously suggested, and instead find a suppression of perturbations. This result presents significant challenges for agreement with current cosmological structure formation observations. The findings apply to a broad range of forms of f(R) for which the modification becomes important at low curvatures, disfavoring them in comparison with the LCDM scenario. As such, these results provide a powerful method to rule out a wide class of modified gravity models aimed at providing an alternative explanation to the dark energy problem.



قيم البحث

اقرأ أيضاً

We investigate the cosmological perturbations in f(T) gravity. Examining the pure gravitational perturbations in the scalar sector using a diagonal vierbien, we extract the corresponding dispersion relation, which provides a constraint on the f(T) an satzes that lead to a theory free of instabilities. Additionally, upon inclusion of the matter perturbations, we derive the fully perturbed equations of motion, and we study the growth of matter overdensities. We show that f(T) gravity with f(T) constant coincides with General Relativity, both at the background as well as at the first-order perturbation level. Applying our formalism to the power-law model we find that on large subhorizon scales (O(100 Mpc) or larger), the evolution of matter overdensity will differ from LCDM cosmology. Finally, examining the linear perturbations of the vector and tensor sectors, we find that (for the standard choice of vierbein) f(T) gravity is free of massive gravitons.
It is nowadays accepted that the universe is undergoing a phase of accelerated expansion as tested by the Hubble diagram of Type Ia Supernovae (SNeIa) and several LSS observations. Future SNeIa surveys and other probes will make it possible to better characterize the dynamical state of the universe renewing the interest in cosmography which allows a model independent analysis of the distance - redshift relation. On the other hand, fourth order theories of gravity, also referred to as $f(R)$ gravity, have attracted a lot of interest since they could be able to explain the accelerated expansion without any dark energy. We show here how it is possible to relate the cosmographic parameters (namely the deceleration $q_0$, the jerk $j_0$, the snap $s_0$ and the lerk $l_0$ parameters) to the present day values of $f(R)$ and its derivatives $f^{(n)}(R) = d^nf/dR^n$ (with $n = 1, 2, 3$) thus offering a new tool to constrain such higher order models. Our analysis thus offers the possibility to relate the model independent results coming from cosmography to the theoretically motivated assumptions of $f(R)$ cosmology.
We study stellar configurations and the space-time around them in metric $f(R)$ theories of gravity. In particular, we focus on the polytropic model of the Sun in the $f(R)=R-mu^4/R$ model. We show how the stellar configuration in the $f(R)$ theory c an, by appropriate initial conditions, be selected to be equal to that described by the Lane-Emden -equation and how a simple scaling relation exists between the solutions. We also derive the correct solution analytically near the center of the star in $f(R)$ theory. Previous analytical and numerical results are confirmed, indicating that the space-time around the Sun is incompatible with Solar System constraints on the properties of gravity. Numerical work shows that stellar configurations, with a regular metric at the center, lead to $gamma_{PPN}simeq1/2$ outside the star ie. the Schwarzschild-de Sitter -space-time is not the correct vacuum solution for such configurations. Conversely, by selecting the Schwarzschild-de Sitter -metric as the outside solution, we find that the stellar configuration is unchanged but the metric is irregular at the center. The possibility of constructing a $f(R)$ theory compatible with the Solar System experiments and possible new constraints arising from the radius-mass -relation of stellar objects is discussed.
Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newtons potential given by $f(R)$ gravity. We compute the corrected $N$-particle partition function analy tically. The corrected partition function leads to more exact equations of states of the system. By assuming that system follows quasi-equilibrium, we derive the exact distribution function which exhibits the $f(R)$ correction. Moreover, we evaluate the critical temperature and discuss the stability of the system. We observe the effects of correction of $f(R)$ gravity on the power law behavior of particle-particle correlation function also. In order to check feasibility of an $f(R)$ gravity approach to the clustering of galaxies, we compare our results with an observational galaxy cluster catalog.
We give a rigorous and mathematically well defined presentation of the Covariant and Gauge Invariant theory of scalar perturbations of a Friedmann-Lemaitre-Robertson-Walker universe for Fourth Order Gravity, where the matter is described by a perfect fluid with a barotropic equation of state. The general perturbations equations are applied to a simple background solution of R^n gravity. We obtain exact solutions of the perturbations equations for scales much bigger than the Hubble radius. These solutions have a number of interesting features. In particular, we find that for all values of n there is always a growing mode for the density contrast, even if the universe undergoes an accelerated expansion. Such a behaviour does not occur in standard General Relativity, where as soon as Dark Energy dominates, the density contrast experiences an unrelenting decay. This peculiarity is sufficiently novel to warrant further investigation on fourth order gravity models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا