ترغب بنشر مسار تعليمي؟ اضغط هنا

The Clustering of Galaxy Groups: Dependence on Mass and Other Properties

234   0   0.0 ( 0 )
 نشر من قبل Andreas A. Berlind
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the clustering of galaxy groups and clusters in the SDSS using the Berlind et al. (2006) group sample, which is designed to identify galaxy systems that each occupy a single dark matter halo. We estimate group masses from their abundances, and measure their relative large-scale bias as a function of mass. Our measurements are in agreement with the theoretical halo bias function, given a standard LCDM cosmological model, and they tend to favor a low value of the power spectrum amplitude sigma_8. We search for a residual dependence of clustering on other group properties at fixed mass, and find the strongest signal for central galaxy color in high mass groups. Massive groups with less red central galaxies are more biased on large scales than similar mass groups with redder central galaxies. We show that this effect is unlikely to be caused by errors in our mass estimates, and is most likely observational evidence of recent theoretical findings that halo bias depends on a ``second parameter other than mass, such as age or concentration. To compare with the data, we study the bias of massive halos in N-body simulations and quantify the strength of the relation between halo bias and concentration at fixed mass. In addition to confirming a non-trivial prediction of the LCDM cosmological model, these results have important implications for the role that environment plays in shaping galaxy properties.

قيم البحث

اقرأ أيضاً

We explore the clustering of galaxy groups in the Galaxy and Mass Assembly (GAMA) survey to investigate the dependence of group bias and profile on separation scale and group mass. Due to the inherent uncertainty in estimating the group selection fun ction, and hence the group auto-correlation function, we instead measure the projected galaxy--group cross-correlation function. We find that the group profile has a strong dependence on scale and group mass on scales $r_bot lesssim 1 h^{-1} mathrm{Mpc}$. We also find evidence that the most massive groups live in extended, overdense, structures. In the first application of marked clustering statistics to groups, we find that group-mass marked clustering peaks on scales comparable to the typical group radius of $r_bot approx 0.5 h^{-1} mathrm{Mpc}$. While massive galaxies are associated with massive groups, the marked statistics show no indication of galaxy mass segregation within groups. We show similar results from the IllustrisTNG simulations and the L-Galaxies model, although L-Galaxies shows an enhanced bias and galaxy mass dependence on small scales.
106 - B. Meneux , L. Guzzo , B. Garilli 2008
We have investigated the dependence of galaxy clustering on their stellar mass at z~1, using the data from the VIMOS-VLT Deep Survey (VVDS). We have measured the projected two-point correlation function of galaxies, wp(rp) for a set of stellar mass s elected samples at an effective redshift <z>=0.85. We have control and quantify all effects on galaxy clustering due to the incompleteness of our low mass samples. We find that more massive galaxies are more clustered. When compared to similar results at z~0.1 in the SDSS, we observed no evolution of the projected correlation function for massive galaxies. These objects present a stronger linear bias at z~1 with respect to low mass galaxies. As expected, massive objects at high redshift are found in the highest pics of the dark matter density field.
343 - Darren S. Reed 2006
We construct mock galaxy catalogues to analyse clustering properties of a Lambda cold dark matter (LCDM) universe within a cosmological dark matter simulation of sufficient resolution to resolve structure down to the scale of dwarfs. We show that the re is a strong age-clustering correlation for objects likely to host luminous galaxies, which includes the satellite halo (subhalo) population. Older mock galaxies are significantly more clustered in our catalog, which consists of satellite haloes as well as the central peaks of discrete haloes, selected solely by peak circular velocity. This age dependence is caused mainly by the age-clustering relation for discrete haloes, recently found by Gao et al., acting mostly on field members, combined with the tendency for older mock galaxies to lie within groups and clusters, where galaxy clustering is enhanced. Our results suggest that the clustering age dependence is manifested in real galaxies. At small scales (less than ~5 Mpc/h), the very simple assumption that galaxy colour depends solely on halo age is inconsistent with the strength of the observed clustering colour trends, where red galaxies become increasingly more clustered than blue galaxies toward smaller scales, suggesting that luminosity weighted galaxy ages do not closely trace the assembly epoch of their dark matter hosts. The age dependence is present but is much weaker for satellite haloes lying within groups and clusters than for the global population.
We carry out a systematic investigation of the total mass density profile of massive (Mstar>2e11 Msun) early-type galaxies and its dependence on galactic properties and host halo mass with the aid of a variety of lensing/dynamical data and large mock galaxy catalogs. The latter are produced via semi-empirical models that, by design, are based on just a few basic input assumptions. Galaxies, with measured stellar masses, effective radii and S{e}rsic indices, are assigned, via abundance matching relations, host dark matter halos characterized by a typical LCDM profile. Our main results are as follows: (i) In line with observational evidence, our semi-empirical models naturally predict that the total, mass-weighted density slope at the effective radius gamma is not universal, steepening for more compact and/or massive galaxies, but flattening with increasing host halo mass. (ii) Models characterized by a Salpeter or variable initial mass function and uncontracted dark matter profiles are in good agreement with the data, while a Chabrier initial mass function and/or adiabatic contractions/expansions of the dark matter halos are highly disfavored. (iii) Currently available data on the mass density profiles of very massive galaxies (Mstar>1e12 Msun), with Mhalo>3e14 Msun, favor instead models with a stellar profile flatter than a S{e}rsic one in the very inner regions (r<3-5 kpc), and a cored NFW or Einasto dark matter profile with median halo concentration a factor of ~2 or <1.3, respectively, higher than those typically predicted by N-body numerical simulations.
We investigate the dependence of galaxy clustering at $z sim 4 - 7$ on UV-luminosity and stellar mass. Our sample consists of $sim$ 10,000 Lyman-break galaxies (LBGs) in the XDF and CANDELS fields. As part of our analysis, the $M_star - M_{rm UV}$ re lation is estimated for the sample, which is found to have a nearly linear slope of $dlog_{10} M_star / d M_{rm UV} sim 0.44$. We subsequently measure the angular correlation function and bias in different stellar mass and luminosity bins. We focus on comparing the clustering dependence on these two properties. While UV-luminosity is only related to recent starbursts of a galaxy, stellar mass reflects the integrated build-up of the whole star formation history, which should make it more tightly correlated with halo mass. Hence, the clustering segregation with stellar mass is expected to be larger than with luminosity. However, our measurements suggest that the segregation with luminosity is larger with $simeq 90%$ confidence (neglecting contributions from systematic errors). We compare this unexpected result with predictions from the textsc{Meraxes} semi-analytic galaxy formation model. Interestingly, the model reproduces the observed angular correlation functions, and also suggests stronger clustering segregation with luminosity. The comparison between our observations and the model provides evidence of multiple halo occupation in the small scale clustering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا