ﻻ يوجد ملخص باللغة العربية
AIMS: We present data from the CFHTLS Strong Lensing Legacy Survey (SL2S). Due to the unsurpassed combined depth, area and image quality of the Canada-France-Hawaii Legacy Survey it is becoming possible to uncover a large, statistically well-defined sample of strong gravitational lenses which spans the dark halo mass spectrum predicted by the concordance model from galaxy to cluster haloes. METHODS: We describe the development of several automated procedures to find strong lenses of various mass regimes in CFHTLS images. RESULTS: The preliminary sample of about 40 strong lensing candidates discovered in the CFHTLS T0002 release, covering an effective field of view of 28 deg$^2$ is presented. These strong lensing systems were discovered using an automated search and consist mainly of gravitational arc systems with splitting angles between 2 and 15 arcsec. This sample shows for the first time that it is possible to uncover a large population of strong lenses from galaxy groups with typical halo masses of about $10^{13}h^{-1}M_odot$. We discuss the future evolution of the SL2S project and its main scientific aims for the next 3 years, in particular our observational strategy to extract the hundreds of gravitational rings also present in these fields.
We present the Strong Lensing Legacy Survey - ARCS (SARCS) sample compiled from the final T0006 data release of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) covering a total non-overlapping area of 159 sq.deg. We adopt a semi-automatic m
We give an overview of the Grism Lens Amplified Survey from Space (GLASS), a large Hubble Space Telescope program aimed at obtaining grism spectroscopy of the fields of ten massive clusters of galaxies at redshift z=0.308-0.686, including the Hubble
We present an overview of the CMZoom survey and its first data release. CMZoom is the first blind, high-resolution survey of the Central Molecular Zone (CMZ; the inner 500 pc of the Milky Way) at wavelengths sensitive to the pre-cursors of high-mass
The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of ~40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate
We present a survey of the mass surface-density of spiral disks, motivated by outstanding uncertainties in rotation-curve decompositions. Our method exploits integral-field spectroscopy to measure stellar and gas kinematics in nearly face-on galaxies