ﻻ يوجد ملخص باللغة العربية
Hubble Space Telescope observations of the nearby (3.22 pc), K2 V star epsilon Eridani have been combined with ground-based astrometric and radial velocity data to determine the mass of its known companion. We model the astrometric and radial velocity measurements simultaneously to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size. Because of the long period of the companion, eps b, we extend our astrometric coverage to a total of 14.94 years (including the three year span of the HST data) by including lower-precision ground-based astrometry from the Allegheny Multichannel Astrometric Photometer. Radial velocities now span 1980.8 -- 2006.3. We obtain a perturbation period, P = 6.85 +/- 0.03 yr, semi-major axis, alpha =1.88 +/- 0.20 mas, and inclination i = 30.1 +/- 3.8 degrees. This inclination is consistent with a previously measured dust disk inclination, suggesting coplanarity. Assuming a primary mass M_* = 0.83 M_{sun}, we obtain a companion mass M = 1.55 +/- 0.24 M_{Jup}. Given the relatively young age of epsilon Eri (~800 Myr), this accurate exoplanet mass and orbit can usefully inform future direct imaging attempts. We predict the next periastron at 2007.3 with a total separation, rho = 0.3 arcsec at position angle, p.a. = -27 degrees. Orbit orientation and geometry dictate that epsilon Eri b will appear brightest in reflected light very nearly at periastron. Radial velocities spanning over 25 years indicate an acceleration consistent with a Jupiter-mass object with a period in excess of 50 years, possibly responsible for one feature of the dust morphology, the inner cavity.
$epsilon$~Eridani is a young planetary system hosting a complex multi-belt debris disk and a confirmed Jupiter-like planet orbiting at 3.48 AU from its host star. Its age and architecture are thus reminiscent of the early Solar System. The most recen
We present observations of Epsilon Eridani from the Submillimeter Array (SMA) at 1.3 millimeters and from the Australia Telescope Compact Array (ATCA) at 7 millimeters that reach an angular resolution of ~4 (13 AU). These first millimeter interferome
As part of a wider search for radio emission from nearby systems known or suspected to contain extrasolar planets $epsilon$ Eridani was observed by the Jansky Very Large Array (VLA) in the 2-4 GHz and 4-8 GHz frequency bands. In addition, as part of
The evidence for a rotation of the epsilon Eridani debris disc is examined. Data at 850 micron wavelength were previously obtained using the Submillimetre Common User Bolometer Array (SCUBA) over periods in 1997-1998 and 2000-2002. By chi-square fitt
A recently observed bump in the cosmic ray (CR) spectrum from 0.3--30 TV is likely caused by a stellar bow shock that reaccelerates emph{preexisting} CRs, which further propagate to the Sun along the magnetic field lines. Along their way, these parti