ترغب بنشر مسار تعليمي؟ اضغط هنا

HST and FUSE Spectroscopy of the DAO-type Central Star LS V+4621

63   0   0.0 ( 0 )
 نشر من قبل Dr. Thomas Rauch
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Rauch




اسأل ChatGPT حول البحث

The DAO-type white dwarf LS V+4621 is the hydrogen-rich central star of the possible planetary nebula Sh 2-216. We have taken high-resolution, high-S/N ultraviolet spectra with STIS aboard the HST and FUSE in order to constrain its photospheric parameters. A detailed spectral analysis by means of state-of-the-art NLTE model-atmosphere techniques is presented which includes the determination the individual abundances of iron-group elements.



قيم البحث

اقرأ أيضاً

52 - M. Ziegler 2006
The far-ultraviolet spectrum of the DAO White Dwarf LS V+4621, the exciting star of the possible planetary nebula Sh 2-216,is strongly contaminated by absorption features from the interstellar medium (ISM). For an ongoing spectral analysis, we aim to extract the pure photospheric spectrum in order to identify and model metal lines of species which are not detectable in the near-ultraviolet wavelength range. We have modeled the interstellar absorption precisely and considered it for the simulation of the FUSE (Far Ultraviolet Spectroscopic Explorer) observation. A state-of-the-art NLTE model-atmosphere spectrum which includes 16 elements is combined with the ISM absorption and then compared with the FUSE spectrum.
187 - T. Rauch 2007
LS V +4621 is the DAO-type central star of the planetary nebula Sh 2-216. We perform a comprehensive spectral analysis of high-resolution, high-S/N ultraviolet observations obtained with FUSE and STIS aboard the HST as well as the optical spectrum of LS V +4621 by means of state-of-the-art NLTE model-atmosphere techniques in order to compare its photospheric properties to theoretical predictions from stellar evolution theory as well as from diffusion calculations. From the N IV - NV, O IV - O VI, Si IV - Si V, and Fe V - Fe VII ionization equilibria, we determined an effective temperature of 95 +/- 2 kK with high precision. The surface gravity is log g = 6.9 +/- 0.2. An unexplained discrepancy appears between the spectroscopic distance d = 224 +46/-58 pc and the parallax distance d = 129 +6/-5 pc of LS V +4621. For the first time, we have identified Mg IV and Ar VI absorption lines in the spectrum of a hydrogen-rich central star and determined the Mg and Ar abundances as well as the individual abundances of iron-group elements (Cr, Mn, Fe, Co, and Ni). With the realistic treatment of metal opacities up to the iron group in the model-atmosphere calculations, the so-called Balmer-line problem (found in models that neglect metal-line blanketing) vanishes. Spectral analysis by means of NLTE model atmospheres has presently arrived at a high level of sophistication, which is now hampered largely by the lack of reliable atomic data and accurate line-broadening tables. Strong efforts should be made to improve upon this situation.
High-resolution UV spectra, obtained with HST and FUSE, enable us to analyse hot hydrogen-rich central stars in detail. Up to now, optical hydrogen and helium lines have been used to derive temperature and surface gravity. Those lines, however, are r ather insensitive; in particular, neutral helium lines have completely vanished in the hottest central stars. Therefore, we have concentrated on ionization balances of metals, which have a rich line spectrum in the UV, to establish a new temperature scale for our sample. Furthermore, we have determined abundances of light metals, which had been poorly known before. They show considerable variation from star to star. We present results of quantitative spectral analyses performed with non-LTE model atmospheres.
87 - D. Jahn , T. Rauch , E. Reiff 2006
PG1159-035 is the prototype of the PG1159 spectral class which consists of extremely hot hydrogen-deficient (pre-) white dwarfs. It is also the prototype of the GW Vir variables, which are non-radial g-mode pulsators. The study of PG1159 stars reveal s insight into stellar evolution and nucleosynthesis during AGB and post-AGB phases. We perform a quantitative spectral analysis of PG1159-035 focusing on the abundance determination of trace elements. We have taken high-resolution ultraviolet spectra of PG1159-035 with the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer. They are analysed with non-LTE line blanketed model atmospheres. We confirm the high effective temperature with high precision (Teff=140,000+/-5000 K) and the surface gravity of logg=7. For the first time we assess the abundances of silicon, phosphorus, sulfur, and iron. Silicon is about solar. For phosphorus we find an upper limit of solar abundance. A surprisingly strong depletion of sulfur (2% solar) is discovered. Iron is not detected, suggesting an upper limit of 30% solar. This coincides with the Fe deficiency found in other PG1159 stars. We redetermine the nitrogen abundance and find it to be lower by one dex compared to previous analyses. The sulfur depletion is in contradiction with current models of AGB star intershell nucleosynthesis. The iron deficiency confirms similar results for other PG1159 stars and is explained by the conversion of iron into heavier elements by n-capture in the s-processing environment of the precursor AGB star. However, the extent of the iron depletion is stronger than predicted by evolutionary models. The relatively low nitrogen abundance compared to other pulsating PG1159 stars weakens the role of nitrogen as a distinctive feature of pulsators and non-pulsators in the GW Vir instability strip.
123 - M. Ziegler 2012
Spectral analyses of hot, compact stars with NLTE (non-local thermodynamical equilibrium) model-atmosphere techniques allow the precise determination of photospheric parameters. The derived photospheric metal abundances are crucial constraints for st ellar evolutionary theory. Previous spectral analyses of the exciting star of the nebula A 35, BD-22 3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. For the analysis of high-resolution and high-S/N (signal-to-noise) FUV (far ultraviolet, FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. The best agreement with the UV observation of BD-22 3467 is achieved at Teff = 80 +/- 10 kK and log g =7.2 +/- 0.3. While Teff of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90 % of the observed absorption features. The stellar mass is M ~ 0.48 Msun. BD-22 3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch to the white dwarf state. This would explain why it is not surrounded by a planetary nebula. However, the star, ionizes the ambient interstellar matter, mimicking a planetary nebula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا