ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of the Microlens in Event MACHO-LMC-20

82   0   0.0 ( 0 )
 نشر من قبل Nitya Kallivayalil
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the identification of the lens responsible for microlensing event MACHO-LMC-20. As part of a textit{Spitzer}/IRAC program conducting mid-infrared follow-up of the MACHO Large Magellanic Cloud microlensing fields, we discovered a significant flux excess at the position of the source star for this event. These data, in combination with high resolution near-infrared textit{Magellan}/PANIC data has allowed us to classify the lens as an early M dwarf in the thick disk of the Milky Way, at a distance of $sim 2$ kpc. This is only the second microlens to have been identified, the first also being a M dwarf star in the disk. Together, these two events are still consistent with the expected frequency of nearby stars in the Milky Way thin and thick disks acting as lenses.

قيم البحث

اقرأ أيضاً

In a recent series of three papers, Belokurov, Evans, and Le Du, and Evans and Belokurov, reanalysed the MACHO collaboration data and gave alternative sets of microlensing events and an alternative optical depth to microlensing toward the Large Magel lanic Cloud (LMC). Even though they examined less than 0.2% of the data they claimed that by using a neural net program they had reliably selected a better (and smaller) set of microlensing candidates. Estimating the optical depth from this smaller set, they claim that the MACHO collaboration overestimated the optical depth by a significant factor and that the MACHO microlensing experiment is consistent with lensing by known stars in the Milky Way and LMC. As we show below, the analysis by these authors contains several errors which render their conclusions meaningless. Their efficiency analysis is clearly in error, and since they did not search through the entire MACHO dataset, they do not know how many microlensing events their neural net would find in the data or what optical depth their method would give. Examination of their selected events suggests that their method misses low S/N events and thus would have lower efficiency than the MACHO selection criteria. In addition, their method is likely to give many more false positives (non-lensing events identified as lensing). Both effects would increase their estimated optical depth. Finally, we note that the EROS discovery that LMC event-23 is a variable star reduces the MACHO collaboration estimates of optical depth and Macho halo fraction by around 8%, and does open the question of additional contamination.
We present observations of microlensing event MACHO-98-BLG-35 which reached a peak magnification factor of almost 80. These observations by the Microlensing Planet Search (MPS) and the MOA Collaborations place strong constraints on the possible plane tary system of the lens star and show intriguing evidence for a low mass planet with a mass fraction $4times 10^{-5} leq epsilon leq 2times 10^{-4}$. A giant planet with $epsilon = 10^{-3}$ is excluded from 95% of the region between 0.4 and 2.5 $R_E$ from the lens star, where $R_E$ is the Einstein ring radius of the lens. This exclusion region is more extensive than the generic lensing zone which is $0.6 - 1.6 R_E$. For smaller mass planets, we can exclude 57% of the lensing zone for $epsilon = 10^{-4}$ and 14% of the lensing zone for $epsilon = 10^{-5}$. The mass fraction $epsilon = 10^{-5}$ corresponds to an Earth mass planet for a lensing star of mass $sim 0.3 msun$. A number of similar events will provide statistically significant constraints on the prevalence of Earth mass planets. In order to put our limits in more familiar terms, we have compared our results to those expected for a Solar System clone averaging over possible lens system distances and orientations. We find that such a system is ruled out at the 90% confidence level. A copy of the Solar System with Jupiter replaced by a second Saturn mass planet can be ruled out at 70% confidence. Our low mass planetary signal (few Earth masses to Neptune mass) is significant at the $4.5sigma$ confidence level. If this planetary interpretation is correct, the MACHO-98-BLG-35 lens system constitutes the first detection of a low mass planet orbiting an ordinary star without gas giant planets.
Using the exceptional long-term monitoring capabilities of the MACHO project, we present here the optical history of LMC X-2 for a continuous 6-yr period. These data were used to investigate the previously claimed periodicities for this source of 8.1 5 h and 12.54 d : we find upper amplitude limits of 0.10 mag and 0.09 mag, respectively.
We present photometry and analysis of the microlensing alert MACHO 96-LMC-2. The ~3% photometry provided by the Global Microlensing Alert Network follow--up effort reveals a periodic modulation in the lightcurve. We attribute this to binarity of the lensed source. Microlensing fits to a rotating binary source magnified by a single lens converge on two minima, separated by delta chi^2 ~ 1. The most significant fit X1 predicts a primary which contributes ~100% of the light, a dark secondary, and an orbital period (T) of 9.2 days. The second fit X2 yields a binary source with two stars of roughly equal mass and luminosity, and T = 21.2 days. The lensed object appears to lie on the upper LMC main sequence. We estimate the mass of the primary component of the binary system, M ~2 M_sun. For the preferred model X1, we explore the range of dark companions by assuming 0.1 M_sun and 1.4 M_sun objects in models X1a and X1b, respectively. We find lens velocities projected to the LMC in these models of v^hat_X1a = 18.3 +/- 3.1 km/s and v^hat_X1b = 188 +/- 32 k/ms. In both these cases, a likelihood analysis suggests an LMC lens is preferred over a Galactic halo lens, although only marginally so in model X1b. We also find v^hat_X2 = 39.6 +/- 6.1 k/ms, where the likelihood for the lens location is strongly dominated by the LMC disk. In all cases, the lens mass is consistent with that of an M-dwarf. The LMC self-lensing rate contributed by 96-LMC-2 is consistent with model self-lensing rates. (Abridged)
We analyze PLANET collaboration data for MACHO 97-BLG-41, the only microlensing event observed to date in which the source transits two disjoint caustics. The PLANET data, consisting of 46 V-band and 325 I-band observations from five southern observa tories, span a period from the initial alert until the end of the event. Our data are incompatible with a static binary lens, but are well fit by a rotating binary lens of mass ratio q=0.34 and angular separation d ~ 0.5 (in units of the Einstein ring radius) in which the binary separation changes in size by delta d = -0.070 +/- 0.009 and in orientation by delta theta = (5.61 +/- 0.36) degrees during the 35.17 days between the separate caustic transits. We use this measurement combined with other observational constraints to derive the first kinematic estimate of the mass, distance, and period of a binary microlens. The relative probability distributions for these parameters peak at a total lens mass M ~ 0.3 solar masses (M-dwarf binary system), lens distance D_L ~ 5.5 kpc, and binary period P ~ 1.5 yr. The robustness of our model is demonstrated by its striking agreement with MACHO/GMAN data that cover several sharp features in the light curve not probed by the PLANET observations, and which did not enter our modeling procedure in any way. Available data sets thus indicate that the light curve of MACHO 97-BLG-41 can be modeled as a source crossing two caustics of a physically-realistic rotating binary so that, contrary to a recent suggestion, the additional effects of a postulated planetary companion to the binary lens are not required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا