ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effect of Lensing on the Large-Scale CMB Anisotropy

243   0   0.0 ( 0 )
 نشر من قبل Tom Shanks
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Shanks




اسأل ChatGPT حول البحث

We first compare the CMB lensing model of Seljak (1996) with the empirical model of Lieu & Mittaz (2005) to determine if the latter approach implies a larger effect on the CMB power-spectrum. We find that the empirical model gives significantly higher results for the magnification dispersion, assuming standard cosmological parameters. However, when the empirical foreground model is modelled via correlation functions and used in the Seljak formalism, the agreement is considerably improved. Thus we conclude that the main difference may be in the assumed foregrounds. We then discuss a foreground mass distribution which gives a lensing dispersion which is constant with angle. In Seljaks formalism, we show this can lead to a smoothing of the CMB power-spectrum which may be able to move the first acoustic peak to smaller l, if the mass clustering amplitude is high enough. Evidence for such a high amplitude comes from the QSO magnification results of Myers et al (2003, 2005) who suggest that foreground galaxy groups may be more massive than expected, implying that Omega_m ~ 1 and strong galaxy anti-bias. We then show that an inflationary model with neither CDM nor a cosmological constant and that predicts a primordial first peak at l=330 may fit the first acoustic peak of the WMAP data. This fit may be regarded as somewhat contrived since it also requires high redshift reionisation at the upper limit of what is allowed by the WMAP results. But given the finely-tuned nature of the standard LCDM model, the contrivance may be small in comparison and certainly the effect of lensing and other foregrounds may still have a considerable influence on the cosmological interpretation of the CMB.



قيم البحث

اقرأ أيضاً

346 - B. Allen 1996
We simulate the anisotropy in the cosmic microwave background (CMB) induced by cosmic strings. By numerically evolving a network of cosmic strings we generate full-sky CMB temperature anisotropy maps. Based on $192$ maps, we compute the anisotropy po wer spectrum for multipole moments $ell le 20$. By comparing with the observed temperature anisotropy, we set the normalization for the cosmic string mass-per-unit-length $mu$, obtaining $Gmu/c^2=1.05 {}^{+0.35}_{-0.20} times10^{-6}$, which is consistent with all other observational constraints on cosmic strings. We demonstrate that the anisotropy pattern is consistent with a Gaussian random field on large angular scales.
We provide a detailed treatment and comparison of the weak lensing effects due to large-scale structure (LSS), or scalar density perturbations and those due to gravitational waves(GW) or tensor perturbations, on the temperature and polarization power spectra of the Cosmic Microwave Background (CMB). We carry out the analysis both in real space by using the correlation function method, as well as in the spherical harmonic space. We find an intriguing similarity between the lensing kernels associated with LSS lensing and GW lensing. It is found that the lensing kernels only differ in relative negative signs and their form is very reminiscent of even and odd parity bipolar spherical harmonic coefficients. Through a numerical study of these lensing kernels, we establish that lensing due to GW is more efficient at distorting the CMB spectra as compared to LSS lensing, particularly for the polarization power spectra. Finally we argue that the CMB B-mode power spectra measurements can be used to place interesting constraints on GW energy densities.
Magnetic fields are everywhere in nature and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large- scale structure. In this review we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cut off scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude $B_lambda$ and the power spectral index $n_B$ which have been deduced from the available CMB observational data by using our computational framework.
In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks is performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.
120 - P. Abreu , M. Aglietta , E. J. Ahn 2011
We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than $60^circ$, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimut hal modulation of the estimated energy of cosmic rays up to the ~2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا