ترغب بنشر مسار تعليمي؟ اضغط هنا

ASTRA Spectrophotometer: Reduction and Flux Calibrations

67   0   0.0 ( 0 )
 نشر من قبل Barry Smalley
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Barry Smalley




اسأل ChatGPT حول البحث

The ASTRA Cassegrain Spectrophotometer and its automated 0.5-m telescope at Fairborn Observatory in Arizona will produce a large quantity of high precision stellar flux distributions. A separate paper (Adelman et al. 2007) presented a review of the design criteria for the system and an overview of its operation. This paper discusses the techniques used in the data reduction to final flux calibrations.

قيم البحث

اقرأ أيضاً

The Extreme ultraviolet SpectroPhotometer (ESP) is one of five channels of the Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO). The ESP channel design is based on a highly stable diffraction transmis sion grating and is an advanced version of the Solar Extreme ultraviolet Monitor (SEM), which has been successfully observing solar irradiance onboard the Solar and Heliospheric Observatory (SOHO) since December 1995. ESP is designed to measure solar Extreme UltraViolet (EUV) irradiance in four first order bands of the diffraction grating centered around 19 nm, 25 nm, 30 nm, and 36 nm, and in a soft X-ray band from 0.1 to 7.0 nm in the zeroth order of the grating. Each bands detector system converts the photo-current into a count rate (frequency). The count rates are integrated over 0.25 sec increments and transmitted to the EVE Science and Operations Center for data processing. An algorithm for converting the measured count rates into solar irradiance and the ESP calibration parameters are described. The ESP pre-flight calibration was performed at the Synchrotron Ultraviolet Radiation Facility of the National Institute of Standards and Technology. Calibration parameters were used to calculate absolute solar irradiance from the Sounding Rocket flight measurements on 14 April 2008. These irradiances for the ESP bands closely match the irradiance determined for two other EUV channels flown simultaneously, EVEs Multiple Euv Grating Spectrograph (MEGS) and SOHOs Charge, Element and Isotope Analysis System / Solar EUV Monitor (CELIAS/SEM).
The Gemini Planet Imager (GPI) has been designed for the direct detection and characterization of exoplanets and circumstellar disks. GPI is equipped with a dual channel polarimetry mode designed to take advantage of the inherently polarized light sc attered off circumstellar material to further suppress the residual seeing halo left uncorrected by the adaptive optics. We explore how recent advances in data reduction techniques reduce systematics and improve the achievable contrast in polarimetry mode. In particular, we consider different flux extraction techniques when constructing datacubes from raw data, division by a polarized flat-field and a method for subtracting instrumental polarization. Using observations of unpolarized standard stars we find that GPIs instrumental polarization is consistent with being wavelength independent within our errors. In addition, we provide polarimetry contrast curves that demonstrate typical performance throughout the GPIES campaign.
117 - S. Davini 2021
We present a method for the in-flight relative flux self-calibration of a spectro-photometer instrument, general enough to be applied to any upcoming galaxy survey on satellite. The instrument response function, that accounts for a smooth continuous variation due to telescope optics, on top of a discontinuous effect due to the segmentation of the detector, is inferred with a $chi^2$ statistics. The method provides unbiased inference of the sources count rates and of the reconstructed relative response function, in the limit of high count rates. We simulate a simplified sequence of observations following a spatial random pattern and realistic distributions of sources and count rates, with the purpose of quantifying the relative importance of the number of sources and exposures for correctly reconstructing the instrument response. We present a validation of the method, with the definition of figures of merit to quantify the expected performance, in plausible scenarios.
66 - Jan Gutowski 1999
We present a generalization of calibrations in which the calibration form is not closed. We use this to examine a class of supersymmetric p-brane worldvolume solitons.As an example we consider M5-brane worldvolume solitons in an AdS background.
The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide phase referencing and astrometric observations at the Keck Interferometer, leading to enhanced sensitivity and the ability to monitor orbits at an accuracy level of 30-100 mi croarcseconds. Here we discuss recent scientific results from ASTRA, and describe new scientific programs that will begin in 2010-2011. We begin with results from the self phase referencing (SPR) mode of ASTRA, which uses continuum light to correct atmospheric phase variations and produce a phase-stabilized channel for spectroscopy. We have observed a number of protoplanetary disks using SPR and a grism providing a spectral dispersion of ~2000. In our data we spatially resolve emission from dust as well as gas. Hydrogen line emission is spectrally resolved, allowing differential phase measurements across the emission line that constrain the relative centroids of different velocity components at the 10 microarcsecond level. In the upcoming year, we will begin dual-field phase referencing (DFPR) measurements of the Galactic Center and a number of exoplanet systems. These observations will, in part, serve as precursors to astrometric monitoring of stellar orbits in the Galactic Center and stellar wobbles of exoplanet host stars. We describe the design of several scientific investigations capitalizing on the upcoming phase-referencing and astrometric capabilities of ASTRA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا