ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized Emission from Interstellar Dust

123   0   0.0 ( 0 )
 نشر من قبل John E. Vaillancourt
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of far-infrared (FIR) and submillimeter (SMM) polarized emission are used to study magnetic fields and dust grains in dense regions of the interstellar medium (ISM). These observations place constraints on models of molecular clouds, star-formation, grain alignment mechanisms, and grain size, shape, and composition. The FIR/SMM polarization is strongly dependent on wavelength. We have attributed this wavelength dependence to sampling different grain populations at different temperatures. To date, most observations of polarized emission have been in the densest regions of the ISM. Extending these observations to regions of the diffuse ISM, and to microwave frequencies, will provide additional tests of grain and alignment models. An understanding of polarized microwave emission from dust is key to an accurate measurement of the polarization of the cosmic microwave background. The microwave polarization spectrum will put limits on the contributions to polarized emission from spinning dust and vibrating magnetic dust.



قيم البحث

اقرأ أيضاً

The statistical characterization of the diffuse magnetized ISM and Galactic foregrounds to the CMB poses a major challenge. To account for their non-Gaussian statistics, we need a data analysis approach capable of efficiently quantifying statistical couplings across scales. This information is encoded in the data, but most of it is lost when using conventional tools, such as one-point statistics and power spectra. The wavelet scattering transform (WST), a low-variance statistical descriptor of non-Gaussian processes introduced in data science, opens a path towards this goal. We applied the WST to noise-free maps of dust polarized thermal emission computed from a numerical simulation of MHD turbulence. We analyzed normalized complex Stokes maps and maps of the polarization fraction and polarization angle. The WST yields a few thousand coefficients; some of them measure the amplitude of the signal at a given scale, and the others characterize the couplings between scales and orientations. The dependence on orientation can be fitted with the reduced WST (RWST), an angular model introduced in previous works. The RWST provides a statistical description of the polarization maps, quantifying their multiscale properties in terms of isotropic and anisotropic contributions. It allowed us to exhibit the dependence of the map structure on the orientation of the mean magnetic field and to quantify the non-Gaussianity of the data. We also used RWST coefficients, complemented by additional constraints, to generate random synthetic maps with similar statistics. Their agreement with the original maps demonstrates the comprehensiveness of the statistical description provided by the RWST. This work is a step forward in the analysis of observational data and the modeling of CMB foregrounds. We also release PyWST, a Python package to perform WST/RWST analyses at: https://github.com/bregaldo/pywst.
Polarization carries information about the magnetic fields in interstellar clouds. The observations of polarized dust emission are used to study the role of magnetic fields in the evolution of molecular clouds and the initial phases of star-formation . We study the grain alignment with realistic simulations, assuming the radiative torques to be the main mechanism that spins the grains up. The aim is to study the efficiency of the grain alignment as a function of cloud position and to study the observable consequences of these spatial variations. Our results are based on the analysis of model clouds derived from MHD simulations. The continuum radiative transfer problem is solved with Monte Carlo methods to estimate the 3D distribution of dust emission and the radiation field strength affecting the grain alignment. We also examine the effect of grain growth in cores. We are able to reproduce the results of Cho & Lazarian using their assumptions. However, the anisotropy factor even in the 1D case is lower than their assumption of $gamma = 0.7$, and thus we get less efficient radiative torques. Compared with our previous paper, the polarization degree vs. intensity relation is steeper because of less efficient grain alignment within dense cores. Without grain growth, the magnetic field of the cores is poorly recovered above a few $A_{rm V}$. If grain size is doubled in the cores, the polarization of dust emission can trace the magnetic field lines possibly up to $A_{rm V} sim 10$ magnitudes. However, many of the prestellar cores may be too young for grain coagulation to play a major role. The inclusion of direction dependent radiative torque efficiency weakens the alignment. Even with doubled grain size, we would not expect to probe the magnetic field past a few magnitudes in $A_{rm V}$.
Our aim is to study the polarization of thermal dust emission to see if the alignment of grain by radiative torques could explain the observed relation between the degree of polarization and the intensity in dense cores. Predictions are made for pola rimetry observations with the Planck satellite. Our results are based on model clouds derived from MHD simulations of magnetized turbulent flows, while the continuum radiative transfer problem is solved with Monte Carlo methods in order to estimate the three-dimensional distribution of dust emission and the radiation field strength affecting the grain alignment. The influence of grain alignment efficiency is examined in the calculated polarization maps. We are able to reproduce the P/I-relation with the grain alignment by radiative torques. The decrease in intrinsic polarization and total emission means that sub-mm polarimetry carries only little information about the magnetic fields in dense cores with high visual extinction. The interpretation of the observations will be further complicated by the unknown magnetic field geometry and the fact that what is observed as individual cores may, in fact, be a superposition of several density enhancements. According to our calculations, Planck will be able to map dust polarization reliably when A_V > 2 mag at spatial resolution of 15.
The upcoming generation of cosmic microwave background (CMB) experiments face a major challenge in detecting the weak cosmic B-mode signature predicted as a product of primordial gravitational waves. To achieve the required sensitivity these experime nts must have impressive control of systematic effects and detailed understanding of the foreground emission that will influence the signal. In this paper, we present templates of the intensity and polarisation of emission from one of the main Galactic foregrounds, interstellar dust. These are produced using a model which includes a 3D description of the Galactic magnetic field, examining both large and small scales. We also include in the model the details of the dust density, grain alignment and the intrinsic polarisation of the emission from an individual grain. We present here Stokes parameter template maps at 150GHz and provide an on-line repository (http://www.imperial.ac.uk/people/c.contaldi/fgpol) for these and additional maps at frequencies that will be targeted by upcoming experiments such as EBEX, Spider and SPTpol.
The Planck survey provides unprecedented full-sky coverage of the submillimetre polarized emission from Galactic dust, bringing new constraints on the properties of dust. The dust grains that emit the radiation seen by Planck in the submillimetre als o extinguish and polarize starlight in the visible. Comparison of the polarization of the emission and of the interstellar polarization on selected lines of sight probed by stars provides unique new diagnostics of the emission and light scattering properties of dust. Using ancillary catalogues of interstellar polarization and extinction of starlight, we obtain the degree of polarization, $p_V$ , and the optical depth in the V band to the star, $tau_V$. Toward these stars we measure the submillimetre polarized intensity, $P_S$, and total intensity, $I_S$, in the Planck 353 GHz channel. For those lines of sight through the diffuse interstellar medium with comparable values of the estimated column density and polarization directions close to orthogonal, we correlate properties in the submillimetre and visible to find two ratios, $R_{S/V} = (P_S/I_S)/(p_V/tau_V)$ and $R_{P/p} = P_S/p_V$ , the latter focusing directly on the polarization properties of the aligned grain population alone. We find $R_{S/V}$ = 4.2, with statistical and systematic uncertainties 0.2 and 0.3, respectively, and $R_{P/p}$ = 5.4 MJy sr$^{-1}$, with uncertainties 0.2 and 0.3 MJy sr$^{-1}$, respectively. Our estimate of $R_{S/V}$ is compatible with predictions based on a range of polarizing dust models that have been developed for the diffuse interstellar medium. However, our estimate of $R_{P/p}$ is not compatible with predictions, which are too low by a factor of about 2.5. This more discriminating diagnostic, $R_{P/p}$, indicates that changes to the optical properties in the models of the aligned grain population are required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا