ترغب بنشر مسار تعليمي؟ اضغط هنا

A statistical analysis of X-ray variability in pre-main sequence objects of the Taurus Molecular Cloud

260   0   0.0 ( 0 )
 نشر من قبل Beate Stelzer
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Stelzer




اسأل ChatGPT حول البحث

This work is part of a systematic X-ray survey of the Taurus star forming complex with XMM-Newton. We study the time series of all X-ray sources associated with Taurus members, to statistically characterize their X-ray variability, and compare the results to those for pre-main sequence stars in the Orion Nebula Cluster and to expectations arising from a model where all the X-ray emission is the result of a large number of stochastically occurring flares. We find that roughly half of the detected X-ray sources show variability above our sensitivity limit, and in ~ 26 % of the cases this variability is recognized as flares. Variability is more frequently detected at hard than at soft energies. The variability statistics of cTTS and wTTS are undistinguishable, suggesting a common (coronal) origin for their X-ray emission. We have for the first time applied a rigorous maximum likelihood method in the analysis of the number distribution of flare energies on pre-main sequence stars. In its differential form this distribution follows a power-law with index alpha = 2.4 +- 0.5, in the range typically observed on late-type stars and the Sun. The flare energy distribution is probably steep enough to explain the heating of stellar coronae by nano-flares (alpha > 2), albeit associated with a rather large uncertainty that leaves some doubt on this conclusion.


قيم البحث

اقرأ أيضاً

373 - L. Scelsi 2007
We studied the thermal properties and chemical composition of the X-ray emitting plasma of a sample of bright members of the Taurus Molecular Cloud to investigate possible differences among classical and weak-lined T Tauri stars and possible dependen ces of the abundances on the stellar activity level and/or on the presence of accretion/circumstellar material. We used medium-resolution X-ray spectra obtained with the sensitive EPIC/PN camera in order to analyse the possible sample. The PN spectra of 20 bright (L_X ~ 10^30 - 10^31 erg/s) Taurus members, with at least ~ 4500 counts, were fitted using thermal models of optically thin plasma with two components and variable abundances of O, Ne, Mg, Si, S, Ar, Ca, and Fe. Extensive preliminary investigations were employed to study the performances of the PN detectors regarding abundance determinations, and finally to check the results of the fittings. We found that the observed X-ray emission of the studied stars can be attributed to coronal plasma having similar thermal properties and chemical composition both in the classical and in the weak-lined T Tauri stars. The results of the fittings did not show evidence for correlations of the abundance patterns with activity or accretion/disk presence. The iron abundance of these active stars is significantly lower than (~ 0.2 of) the solar photospheric value. An indication of slightly different coronal properties in stars with different spectral type is found from this study. G-type and early K-type stars have, on average, slightly higher Fe abundances (Fe ~ 0.24 solar) with respect to stars with later spectral type (Fe ~ 0.15 solar), confirming previous findings from high-resolution X-ray spectroscopy; stars of the former group are also found to have, on average, hotter coronae.
We present infrared photometry obtained with the IRAC camera on the Spitzer Space Telescope of a sample of 82 pre-main sequence stars and brown dwarfs in the Taurus star-forming region. We find a clear separation in some IRAC color-color diagrams bet ween objects with and without disks. A few ``transition objects are noted, which correspond to systems in which the inner disk has been evacuated of small dust. Separating pure disk systems from objects with remnant protostellar envelopes is more difficult at IRAC wavelengths, especially for objects with infall at low rates and large angular momenta. Our results generally confirm the IRAC color classification scheme used in previous papers by Allen et al. and Megeath et al. to distinguish between protostars, T Tauri stars with disks, and young stars without (inner) disks. The observed IRAC colors are in good agreement with recent improved disk models, and in general accord with models for protostellar envelopes derived from analyzing a larger wavelength region. We also comment on a few Taurus objects of special interest. Our results should be useful for interpreting IRAC results in other, less well-studied star-forming regions.
58 - J. H. Kastner 2006
We present Chandra X-ray Observatory monitoring observations of the recent accretion outburst displayed by the pre-main sequence (pre-MS) star V1647 Ori. The X-ray observations were obtained over a period beginning prior to outburst onset in late 200 3 and continuing through its apparent cessation in late 2005, and demonstrate that the mean flux of the spatially coincident X-ray source closely tracked the near-infrared luminosity of V1647 Ori throughout its eruption. We find negligible likelihood that the correspondence between X-ray and infrared light curves over this period was the result of multiple X-ray flares unrelated to the accretion burst. The recent Chandra data confirm that the X-ray spectrum of V1647 Ori hardened during outburst, relative both to its pre-outburst state and to the X-ray spectra of nearby pre-MS stars in the L1630 cloud. We conclude that the observed changes in the X-ray emission from V1647 Ori over the course of its 2003-2005 eruption were generated by a sudden increase and subsequent decline in its accretion rate. These results for V1647 Ori indicate that the flux of hard X-ray emission from erupting low-mass, pre-MS stars, and the duration and intensity of such eruptions, reflect the degree to which star-disk magnetic fields are reorganized before and during major accretion events.
We use X-ray and infrared observations to study the properties of three classes of young stars in the Carina Nebula: intermediate-mass (2--8M$_odot$) pre-main sequence stars (IMPS; i.e. intermediate-mass T Tauri stars), late-B and A stars on the zero -age main sequence (AB), and lower-mass T Tauri stars (TTS). We divide our sources among these three sub-classifications and further identify disk-bearing young stellar objects versus diskless sources with no detectable infrared (IR) excess emission using IR (1--8 $mu$m) spectral energy distribution modeling. We then perform X-ray spectral fitting to determine the hydrogen absorbing column density ($N_{rm H}$), absorption-corrected X-ray luminosity ($L_{rm X}$), and coronal plasma temperature ($kT$) for each source. We find that the X-ray spectra of both IMPS and TTS are characterized by similar $kT$ and $N_{rm H}$, and on average $L_{rm X}$/$L_{rm bol} sim4times10^{-4}$. IMPS are systematically more luminous in X-rays (by $sim$0.3 dex) than all other sub-classifications, with median $L_{rm X} = 2.5times10^{31}$ erg s$^{-1}$, while AB stars of similar masses have X-ray emission consistent with TTS companions. These lines of evidence converge on a magneto-coronal flaring source for IMPS X-ray emission, a scaled-up version of the TTS emission mechanism. IMPS therefore provide powerful probes of isochronal ages for the first $sim$10 Myr in the evolution of a massive stellar population, because their intrinsic, coronal X-ray emission decays rapidly after they commence evolving along radiative tracks. We suggest that the most luminous (in both X-rays and IR) IMPS could be used to place empirical constraints on the location of the intermediate-mass stellar birth line.
Continuing the attempt to understand the properties of the stellar content in the young cluster NGC 1893 we have carried out a comprehensive multi-wavelength study of the region. The present study focuses on the X-ray properties of T-Tauri Stars (TTS s) in the NGC 1893 region. We found a correlation between the X-ray luminosity, $L_X$, and the stellar mass (in the range 0.2$-$2.0 msun) of TTSs in the NGC 1893 region, similar to those reported in some other young clusters, however the value of the power-law slope obtained in the present study ($sim$ 0.9) for NGC 1893 is smaller than those ($sim$1.4 - 3.6) reported in the case of TMC, ONC, IC 348 and Chameleon star forming regions. However, the slope in the case of Class III sources (Weak line TTSs) is found to be comparable to that reported in the case of NGC 6611 ($sim$ 1.1). It is found that the presence of circumstellar disks has no influence on the X-ray emission. The X-ray luminosity for both CTTSs and WTTSs is found to decrease systematically with age (in the range $sim $ 0.4 Myr - 5 Myr). The decrease of the X-ray luminosity of TTSs (slope $sim$ -0.6) in the case of NGC 1893 seems to be faster than observed in the case of other star-forming regions (slope -0.2 to -0.5). There is indication that the sources having relatively large NIR excess have relatively lower $L_X$ values. TTSs in NGC 1893 do not follow the well established X-ray activity - rotation relation as in the case of main-sequence stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا