ﻻ يوجد ملخص باللغة العربية
We present the initial results from the Spitzer Survey of the Small Magellanic Cloud (S3MC), which imaged the star-forming body of the Small Magellanic Cloud (SMC) in all seven MIPS and IRAC wavebands. We find that the F_8/F_24 ratio (an estimate of PAH abundance) has large spatial variations and takes a wide range of values that are unrelated to metallicity but anticorrelated with 24 um brightness and F_24/F_70 ratio. This suggests that photodestruction is primarily responsible for the low abundance of PAHs observed in star-forming low-metallicity galaxies. We use the S3MC images to compile a photometric catalog of ~400,000 mid- and far-infrared point sources in the SMC. The sources detected at the longest wavelengths fall into four main categories: 1) bright 5.8 um sources with very faint optical counterparts and very red mid-infrared colors ([5.8]-[8.0]>1.2), which we identify as YSOs. 2) Bright mid-infrared sources with mildly red colors (0.16<[5.8]-[8.0]<0.6), identified as carbon stars. 3) Bright mid-infrared sources with neutral colors and bright optical counterparts, corresponding to oxygen-rich evolved stars. And, 4) unreddened early B stars (B3 to O9) with a large 24 um excess. This excess is reminiscent of debris disks, and is detected in only a small fraction of these stars (<5%). The majority of the brightest infrared point sources in the SMC fall into groups one to three. We use this photometric information to produce a catalog of 282 bright YSOs in the SMC with a very low level of contamination (~7%).
We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared proper
We have observed a sample of 36 objects in the Small Magellanic Cloud (SMC) with the Infrared Spectrometer on the Spitzer Space Telescope. Nineteen of these sources are carbon stars. An examination of the near- and mid-infrared photometry shows that
We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties.
The Magellanic clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust.W
We carried out a near- to mid-infrared imaging and spectroscopic observations of the patchy areas in the Small Magellanic Cloud using the Infrared Camera on board AKARI. Two 100 arcmin2 areas were imaged in 3.2, 4.1, 7, 11, 15, and 24 um and also spe