ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mass of the Black Hole in the Seyfert 1 Galaxy NGC 4593 from Reverberation Mapping

72   0   0.0 ( 0 )
 نشر من قبل Kelly Denney
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kelly D. Denney




اسأل ChatGPT حول البحث

We present new observations leading to an improved black hole mass estimate for the Seyfert 1 galaxy NGC 4593 as part of a reverberation-mapping campaign conducted at the MDM Observatory. Cross-correlation analysis of the H_beta emission-line light curve with the optical continuum light curve reveals an emission-line time delay of 3.73 (+-0.75) days. By combining this time delay with the H_beta line width, we derive a central black hole mass of M_BH = 9.8(+-2.1)x10^6 M_sun, an improvement in precision of a factor of several over past results.

قيم البحث

اقرأ أيضاً

A large reverberation mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hbeta 4861 and He II 4686 and a central black hole mass measurement of about 10 million solar masses, consistent with previous measurements. A ver y low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hbeta measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hbeta-emitting broad-line region and the AGN luminosity. It was necessary to detrend the continuum and Hbeta and He II 4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.
We report results of the first reverberation mapping campaign of I Zwicky 1 during $2014$-$2016$, which showed unambiguous reverberations of the broad H$beta$ line emission to the varying optical continuum. From analysis using several methods, we obt ain a reverberation lag of $tau_{rm Hbeta}=37.2^{+4.5}_{-4.9},$ days. Taking a virial factor of $f_{_{rm BLR}}=1$, we find a black hole mass of $M_{bullet}=9.30_{-1.38}^{+1.26}times 10^6 M_{odot}$ from the mean spectra. The accretion rate is estimated to be $203.9_{-65.8}^{+61.0},L_{rm Edd}c^{-2}$, suggesting a super-Eddington accretor, where $L_{rm Edd}$ is the Eddington luminosity and $c$ is the speed of light. By decomposing {it Hubble Space Telescope} images, we find that the stellar mass of the bulge of its host galaxy is $log (M_{rm bulge}/M_{odot}) = rm 10.92pm 0.07$. This leads to a black hole to bulge mass ratio of $sim 10^{-4}$, which is significantly smaller than that of classical bulges and elliptical galaxies. After subtracting the host contamination from the observed luminosity, we find that I Zw 1 follows the empirical $R_{rm BLR}propto L_{5100}^{1/2}$ relation.
56 - C. S. Stalin 2011
We present the results of our optical monitoring campaign of the X-ray source H 0507+164, a low luminosity Seyfert 1.5 galaxy at a redshift z = 0.018. Spectroscopic observations were carried out during 22 nights in 2007, from the 21 of November to th e 26 of December. Photometric observations in the R-band for 13 nights were also obtained during the same period. The continuum and broad line fluxes of the galaxy were found to vary during our monitoring period. The R-band differential light curve with respect to a companion star also shows a similar variability. Using cross correlation analysis, we estimated a time delay of 3.01 days (in the rest frame), of the response of the broad H-beta line fluxes to the variations in the optical continuum at 5100 angstroms. Using this time delay and the width of the H-beta line, we estimated the radius for the Broad Line Region (BLR) of 2.53 x 10^{-3} parsec, and a black hole mass of 9.62 x 10^{6} solar mass.
A reverberation-mapping program on NGC 4395, the least-luminous known Seyfert 1 galaxy, undertaken with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, yields a measurement of the mass of the central black hole of 360,000 sola r masses. The observations consist of two visits of 5 orbits each, in 2004 April and July. During each of these visits, the UV continuum varied by at least 10% (rms) and only C IV 1549 showed corresponding variations large enough to reliably determine the emission-line lag, which was measured to be of order one hour for both visits. The size of the C IV-emitting region is about a factor of three smaller than expected if the slope of the broad-line region radius-luminosity relationship is identical to that for the H-beta emission line. NGC 4395 is underluminous even for its small black hole mass; the Eddington ratio of 0.0012 is lower than that of any other active galactic nucleus for which a black hole mass measurement has been made by emission-line reverberation.
Improved analysis of ultraviolet and optical monitoring data on the Seyfert 1 galaxy NGC 3783 provides evidence for the existence of a supermassive, (8.7+/-1.1)x10^6 M_sun, black hole in this galaxy. By using recalibrated spectra from the Internation al Ultraviolet Explorer satellite and ground-based optical data, as well as refined techniques of reverberation mapping analysis, we have reduced the statistical uncertainties in the response of the emission lines to variations in the ionizing continuum. The different time lags in the emission line responses indicate a stratification in the ionization structure of the broad-line region and are consistent with the virial relationship suggested by the analysis of similar active galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا