ﻻ يوجد ملخص باللغة العربية
The All-wavelength Extended Groth Strip International Survey (AEGIS) team presents broad-band spectral energy distributions (SEDs), from X-ray to radio wavelengths, for 71 galaxies spanning the redshift range 0.55-1.16 (<z>~0.7). Galaxies with secure redshifts were selected from a small (22 arcminute-square) sub-section of the Keck/DEIMOS galaxy redshift survey in the Extended Groth Strip field that has also been targeted for deep panchromatic imaging by Chandra (X-ray), GALEX (ultraviolet), Canada-France-Hawaii Telescope (optical), Hubble Space Telescope (optical/near infrared), Palomar Observatory (near infrared), Spitzer (mid/far infrared), and the Very Large Array (radio.) The absolute magnitude of the typical galaxy in our sample is M_B=-19.82. The ultraviolet to mid-infrared portion of their spectral energy distributions (SEDs) are found to be bracketed by two stellar-only model SEDs: an early burst followed by passive evolution and a constant star-formation rate since early times; this suggests that few of these galaxies are undergoing major starbursts. Approximately half the galaxies show a mid- to far-infrared excess relative to the model SEDs, consistent with thermal emission from interstellar dust. Two objects have power-law SEDs, indicating that they are dominated by active galactic nuclei; both are detected in X-rays. The galaxies are grouped by rest-frame color,quantitative optical morphology, and [OII] emission line strength (possible indicator of star formation). On average, the panchromatic SEDs of the galaxies, from the ultraviolet to the infrared, follow expected trends: redder SEDs are associated with red U-B, early-type morphology, and low [OII] emission, and vice versa for blue SEDs.
We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. (1994) by using high-quality data obtained with several space and ground-based telescopes, including NASAs Great Observ
We present 0.5 -160 micron Spectral Energy Distributions (SEDs) of galaxies, detected at 70microns with the Multiband Imaging Photometer for Spitzer (MIPS), using broadband imaging data from Spitzer and ground-based telescopes. Spectroscopic redshift
We present a novel approach to photometric redshifts, one that merges the advantages of both the template fitting and empirical fitting algorithms, without any of their disadvantages. This technique derives a set of templates, describing the spectral
(abridged) We present STARDUST, a new self-consistent modelling of the spectral energy distributions (SEDs) of galaxies from far-UV to radio wavelengths. In order to derive the SEDs in this broad spectral range, we first couple spectrophotometric and
The physical parameters of galaxies and/or AGNs can be derived by fitting their multi-band spectral energy distributions (SEDs). By using CIGALE code, we perform multi-band SED fitting (from ultraviolet to infrared) for 791 X-ray sources (518 AGNs an