ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Cloud Evolution II. From cloud formation to the early stages of star formation in decaying conditions

127   0   0.0 ( 0 )
 نشر من قبل Javier Ballesteros-Paredes
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the formation of giant dense cloud complexes and of stars within them by means of SPH numerical simulations of the mildly supersonic collision of gas streams (``inflows) in the warm neutral medium (WNM). The resulting compressions cause cooling and turbulence generation in the gas, forming a cloud that then becomes self-gravitating and undergoes global collapse. Simultaneously, the turbulent, nonlinear density fluctuations induce fast, local collapse events. The simulations show that: a) The clouds are not in a state of equilibrium. Instead, they undergo secular evolution. Initially, their mass and gravitational energy |Eg| increase steadily, while the turbulent energy Ek reaches a plateau. b) When |Eg| becomes comparable to Ek, global collapse begins, causing a simultaneous increase in both that maintains a near-equipartition condition |Eg| ~ 2 Ek. c) Longer inflow durations delay the onset of global and local collapse, by maintaining a higher turbulent velocity dispersion in the cloud over longer times. d) The star formation rate is large from the beginning, without any period of slow and accelerating star formation. e) The column densities of the local star-forming clumps are very similar to reported values of the column density required for molecule formation, suggesting that locally molecular gas and star formation occur nearly simultaneously. The MC formation mechanism discussed here naturally explains the apparent ``virialized state of MCs and the ubiquitous presence of HI halos around them. Within their assumptions, our simulations support the scenario of rapid star formation after MCs are formed, although long (>~ 15 Myr) accumulation periods do occur during which the clouds build up their gravitational energy, and which are expected to be spent in the atomic phase.

قيم البحث

اقرأ أيضاً

We discuss molecular cloud formation by large-scale supersonic compressions in the diffuse warm neutral medium (WNM). Initially, a shocked layer forms, and within it, a thin cold layer. An analytical model and high-resolution 1D simulations predict t he thermodynamic conditions in the cold layer. After $sim 1$ Myr of evolution, the layer has column density $sim 2.5 times 10^{19} psc$, thickness $sim 0.03$ pc, temperature $sim 25$ K and pressure $sim 6650$ K $pcc$. These conditions are strongly reminiscent of those recently reported by Heiles and coworkers for cold neutral medium sheets. In the 1D simulations, the inflows into the sheets produce line profiles with a central line of width $sim 0.5 kms$ and broad wings of width $sim 1 kms$. 3D numerical simulations show that the cold layer develops turbulent motions and increases its thickness, until it becomes a fully three-dimensional turbulent cloud. Fully developed turbulence arises on times ranging from $sim 7.5$ Myr for inflow Mach number $Mr = 2.4$ to $> 80$ Myr for $Mr = 1.03$. These numbers should be considered upper limits. The highest-density turbulent gas (HDG, $n > 100 pcc$) is always overpressured with respect to the mean WNM pressure by factors 1.5--4, even though we do not include self-gravity. The intermediate-density gas (IDG, $10 < n [{rm cm}^ {-3}] < 100$) has a significant pressure scatter that increases with $Mr$, so that at $Mr = 2.4$, a significant fraction of the IDG is at a higher pressure than the HDG. Our results suggest that the turbulence and at least part of the excess pressure in molecular clouds can be generated by the compressive process that forms the clouds themselves, and that thin CNM sheets may be formed transiently by this mechanism, when the compressions are only weakly supersonic.
103 - C. M. Booth 2007
We describe a numerical implementation of star formation in disk galaxies, in which the conversion of cooling gas to stars in the multiphase interstellar medium is governed by the rate at which molecular clouds are formed and destroyed. In the model, clouds form from thermally unstable ambient gas and get destroyed by feedback from massive stars and thermal conduction. Feedback in the ambient phase cycles gas into a hot galactic fountain or wind. We model the ambient gas hydrodynamically using smoothed particle hydrodynamics (SPH). However, we cannot resolve the Jeans mass in the cold and dense molecular gas and, therefore, represent the cloud phase with ballistic particles that coagulate when colliding. We show that this naturally produces a multiphase medium with cold clouds, a warm disk, hot supernova bubbles and a hot, tenuous halo. Our implementation of this model is based on the Gadget N-Body code. We illustrate the model by evolving an isolated Milky Way-like galaxy and study the properties of a disk formed in a rotating spherical collapse. Many observed properties of disk galaxies are reproduced well, including the molecular cloud mass spectrum, the molecular fraction as a function of radius, the Schmidt law, the stellar density profile and the appearance of a galactic fountain.
Does star formation proceed in the same way in large spirals such as the Milky Way and in smaller chemically younger galaxies? Earlier work suggests a more rapid transformation of H$_2$ into stars in these objects but (1) a doubt remains about the va lidity of the H$_2$ mass estimates and (2) there is currently no explanation for why star formation should be more efficient. M~33, a local group spiral with a mass $sim 10$% and a metallicity half that of the Galaxy, represents a first step towards the metal poor Dwarf Galaxies. We have searched for molecular clouds in the outer disk of M~33 and present here a set of detections of both $^{12}$CO and $^{13}$CO, including the only detections (for both lines) beyond the R$_{25}$ radius in a subsolar metallicity galaxy. The spatial resolution enables mass estimates for the clouds and thus a measure of the $N({rm H}_2) / I_{rm CO}$ ratio, which in turn enables a more reliable calculation of the H$_2$ mass. Our estimate for the outer disk of M~33 is $N({rm H}_2) / I_{rm CO(1-0)} sim 5 times 10^{20} ,{rm cm^{-2}/(K{rm km s^{-1}})}$ with an estimated uncertainty of a factor $le 2$. While the $^{12/13}$CO line ratios do not provide a reliable measure of $N({rm H}_2) / I_{rm CO}$, the values we find are slightly greater than Galactic and corroborate a somewhat higher $N({rm H}_2) / I_{rm CO}$ value. Comparing the CO observations with other tracers of the interstellar medium, no reliable means of predicting where CO would be detected was identified. In particular, CO detections were often not directly on local HI or FIR or H$alpha$ peaks, although generally in regions with FIR emission and high HI column density. The results presented here provide support for the quicker transformation of H$_2$ into stars in M~33 than in large local universe spirals.
Using Spitzer Space Telescope and Chandra X-ray Observatory data, we identify YSOs in the Rosette Molecular Cloud (RMC). By being able to select cluster members and classify them into YSO types, we are able to track the progression of star formation locally within the cluster environments and globally within the cloud. We employ nearest neighbor method (NNM) analysis to explore the density structure of the clusters and YSO ratio mapping to study age progressions in the cloud. We find a relationship between the YSO ratios and extinction which suggests star formation occurs preferentially in the densest parts of the cloud and that the column density of gas rapidly decreases as the region evolves. This suggests rapid removal of gas may account for the low star formation efficiencies observed in molecular clouds. We find that the overall age spread across the RMC is small. Our analysis suggests that star formation started throughout the complex around the same time. Age gradients in the cloud appear to be localized and any effect the HII region has on the star formation history is secondary to that of the primordial collapse of the cloud.
We review the role that magnetic field may have on the formation and evolution of molecular clouds. After a brief presentation and main assumptions leading to ideal MHD equations, their most important correction, namely the ion-neutral drift is descr ibed. The nature of the multi-phase interstellar medium (ISM) and the thermal processes that allows this gas to become denser are presented. Then we discuss our current knowledge of compressible magnetized turbulence, thought to play a fundamental role in the ISM. We also describe what is known regarding the correlation between the magnetic and the density fields. Then the influence that magnetic field may have on the interstellar filaments and the molecular clouds is discussed, notably the role it may have on the prestellar dense cores as well as regarding the formation of stellar clusters. Finally we briefly review its possible effects on the formation of molecular clouds themselves. We argue that given the magnetic intensities that have been measured, it is likely that magnetic field is i) responsible of reducing the star formation rate in dense molecular cloud gas by a factor of a few, ii) strongly shaping the interstellar gas by generating a lot of filaments and reducing the numbers of clumps, cores and stars, although its exact influence remains to be better understood. % by a factor on the order of at least 2. Moreover at small scales, magnetic braking is likely a dominant process that strongly modifies the outcome of the star formation process. Finally, we stress that by inducing the formation of more massive stars, magnetic field could possibly enhance the impact of stellar feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا