ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of Sub-damped Lyman-alpha Absorbers in the Cosmic Evolution of Metals

37   0   0.0 ( 0 )
 نشر من قبل Varsha P. Kulkarni
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. P. Kulkarni




اسأل ChatGPT حول البحث

Observations of low mean metallicity of damped Lyman-alpha (DLA) quasar absorbers at all redshifts studied appear to contradict the predictions for the global mean interstellar metallicity in galaxies from cosmic chemical evolution models. On the other hand, a number of metal-rich sub-DLA systems have been identified recently, and the fraction of metal-rich sub-DLAs appears to be considerably larger than that of metal-rich DLAs, especially at z < 1.5. In view of this, here we investigate the evolution of metallicity in sub-DLAs. We find that the mean Zn metallicity of the observed sub-DLAs may be higher than that of the observed DLAs, especially at low redshifts, reaching a near-solar level at z <~ 1. This trend does not appear to be an artifact of sample selection, the use of Zn, the use of N_{HI}-weighting, or observational sensitivity. While a bias against very low metallicity could be present in the sub-DLA sample in some situations, this cannot explain the difference between the DLA and sub-DLA metallicities at low z. The primary reason for the difference between the DLAs and sub-DLAs appears to be the dearth of metal-rich DLAs. We estimate the sub-DLA contribution to the total metal budget using measures of their metallicity and comoving gas density. These calculations suggest that at z <~ 1, the contribution of sub-DLAs to the total metal budget may be several times that of DLAs. At higher redshifts also, there are indications that the sub-DLAs may contribute significantly to the cosmic metal budget.


قيم البحث

اقرأ أيضاً

We consider the questions of whether the damped Lyman-alpha (DLA) and sub-DLA absorbers in quasar spectra differ intrinsically in metallicity, and whether they could arise in galaxies of different masses. Using the recent measurements of the robust m etallicity indicators Zn and S in DLAs and sub-DLAs, we confirm that sub-DLAs have higher mean metallicities than DLAs, especially at $z lesssim 2$. We find that the intercept of the metallicity-redshift relation derived from Zn and S is higher than that derived from Fe by 0.5-0.6 dex. We also show that, while there is a correlation between the metallicity and the rest equivalent width of Mg II $lambda 2796$ or Fe II $lambda 2599$ for DLAs, no correlation is seen for sub-DLAs. Given this, and the similar Mg II or Fe II selection criteria employed in the discovery of both types of systems at lower redshifts, the difference between metallicities of DLAs and sub-DLAs appears to be real and not an artefact of selection. This conclusion is supported by our simulations of Mg II $lambda 2796$ and Fe II $lambda 2599$ lines for a wide range of physical conditions. On examining the velocity spreads of the absorbers, we find that sub-DLAs show somewhat higher mean and median velocity spreads ($Delta v$), and an excess of systems with $Delta v > 150$ km s$^{-1}$, than DLAs. Compared to DLAs, the [Mn/Fe] vs. [Zn/H] trend for sub-DLAs appears to be steeper and closer to the trend for Galactic bulge and thick disk stars, possibly suggesting different stellar populations. The absorber data appear to be consistent with galaxy down-sizing. The data are also consistent with the relative number densities of low-mass and high-mass galaxies. It is thus plausible that sub-DLAs arise in more massive galaxies on average than DLAs.
Damped Lyman-alpha absorbers (DLAs), seen in absorption against a background quasar, provide the most detailed probes available of element abundances in the Universe over > 90 % of its age. DLAs can be used to observationally measure the global mean metallicity in the Universe and its evolution with time. Paradoxically, these observations are more difficult at lower redshifts, where the absorber rest-frame UV spectra are cut-off due to the atmospheric absorption. We present here high-resolution VLT/UVES observations of several elements contained in three DLAs and one sub-DLA with 0.6<z_abs<0.9. We detect Mg I, Mg II, Fe II, Zn II, Cr II, Mn II, Ti II and Ca II. Our observations more than double the high-resolution sample of [Zn/H] at z<1. We also report the discovery of three metal-rich systems, whereas most previous measurements show low N(HI)-weighted mean metallicity projecting to about 1/6th solar level at z=0. We derive [Zn/H]=-0.11+/-0.04 at z_abs=0.725, [Zn/H]=-0.54+/-0.20 at z_abs=0.740 and [Zn/H]=-0.49+/-0.22 at z_abs=0.652, plus one additional upper limit ([Zn/H]<-0.36 at z_abs=0.842). These measurements confirm the existence of quasar absorbers with relatively high metallicities based on abundance estimates free from the effect of dust depletion. Possible implications of these results for the metallicity of neutral gas phase in the past ~ 8 Gyr are presented and compared with models.
200 - Celine Peroux 2001
We present a study of the evolution of the column density distribution, f(N,z), and total neutral hydrogen mass in high-column density quasar absorbers using candidates from a recent high-redshift survey for damped Lyman-alpha (DLA) and Lyman limit s ystem (LLS) absorbers. The observed number of LLS (N(HI)> 1.6 * 10^{17} atom/cm^2) is used to constrain f(N,z) below the classical DLA Wolfe et al. (1986) definition of 2 * 10^{20} atom/cm^2. The joint LLS-DLA analysis shows unambiguously that f(N,z) deviates significantly from a single power law and that a Gamma-law distribution of the form f(N,z)=(f_*/N_*)(N/N_*)^{-Beta} exp(-N/N_*) provides a better description of the observations. These results are used to determine the amount of neutral gas contained in DLAs and in systems with lower column density. Whilst in the redshift range 2 to 3.5, ~90% of the neutral HI mass is in DLAs, we find that at z>3.5 this fraction drops to only 55% and that the remaining missing mass fraction of the neutral gas lies in sub-DLAs with N(HI) 10^{19} - 2 * 10^{20} atom/cm^2. The characteristic column density, N_*, changes from 1.6 * 10^{21} atom/cm^2 at z<3.5 to 2.9 * 10^{20} atom/cm^2 at z>3.5, supporting a picture where at z>3.5, we are directly observing the formation of high column density neutral hydrogen DLA systems from lower column density units. Moreover since current metallicity studies of DLA systems focus on the higher column density systems they may be giving a biased or incomplete view of global galactic chemical evolution at z>3. After correcting the observed mass in HI for the ``missing neutral gas the comoving mass density now shows no evidence for a decrease above z=2. (abridged)
107 - Sungryong Hong 2010
The kinematics of damped Lyman alpha absorbers (DLAs) are difficult to reproduce in hierarchical galaxy formation models, particularly the preponderance of wide systems. We investigate DLA kinematics at z=3 using high-resolution cosmological hydrodyn amical simulations that include a heuristic model for galactic outflows. Without outflows, our simulations fail to yield enough wide DLAs, as in previous studies. With outflows, predicted DLA kinematics are in much better agreement with observations. Comparing two outflow models, we find that a model based on momentum-driven wind scalings provides the best match to the observed DLA kinematic statistics of Prochaska & Wolfe. In this model, DLAs typically arise a few kpc away from galaxies that would be identified in emission. Narrow DLAs can arise from any halo and galaxy mass, but wide ones only arise in halos with mass >10^11 Mo, from either large central or small satellite galaxies. This implies that the success of this outflow model originates from being most efficient at pushing gas out from small satellite galaxies living in larger halos. This increases the cross-section for large halos relative to smaller ones, thereby yielding wider kinematics. Our simulations do not include radiative transfer effects or detailed metal tracking, and outflows are modeled heuristically, but they strongly suggest that galactic outflows are central to understanding DLA kinematics. An interesting consequence is that DLA kinematics may place constraints on the nature and efficiency of gas ejection from high-z galaxies.
107 - C. Peroux 2008
Damped Lyman-alpha systems (DLAs) and sub-DLAs seen toward background quasars provide the most detailed probes of elemental abundances. Somewhat paradoxically these measurements are more difficult at lower redshifts due to the atmospheric cut-off, an d so a few years ago our group began a programme to study abundances at z < 1.5 in quasar absorbers. In this paper, we present new UVES observations of six additional quasar absorption line systems at z < 1.5, five of which are sub-DLAs. We find solar or above solar metallicity, as measured by the abundance of zinc, assumed not to be affected by dust, in two sub-DLAs: one, towards Q0138-0005 with [Zn/H]=+0.28 +/- 0.16; the other towards Q2335+1501 with [Zn/H]=+0.07 +/- 0.34. Relatively high metallicity was observed in another system: Q0123-0058 with [Zn/H]=-0.45 +/- 0.20. Only for the one DLA in our sample, in Q0449-1645, do we find a low metallicity, [Zn/H]=-0.96 +/- 0.08. We also note that in some of these systems large relative abundance variations from component to component are observed in Si, Mn, Cr and Zn.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا