ﻻ يوجد ملخص باللغة العربية
Simple theoretical calculations have suggested that small body impacts onto Plutos newly discovered small satellites, Nix and Hydra, are capable of generating time-variable rings or dust sheets in the Pluto system. Using HST/ACS data obtained on 2006 February 15 and 2006 March 2, we find no observational evidence for such a ring system and present the first constraints on the present-day I/F and optical depth of a putative ring system. At the 1500-km radial resolution of our search, we place a 3-sigma upper limit on the azimuthally-averaged normal I/F of ring particles of 5.1x10^-7 at a distance of 42,000 km from the Pluto-Charon barycenter, the minimum distance for a dynamically stable ring (Stern et al., 1994; Nagy et al., 2006); 4.4x10^-7 at the orbit of Nix; and 2.5x10^-7 at the orbit of Hydra. For an assumed ring particle albedo of 0.04 (0.38), these I/F limits translate into 3-sigma upper limits on the normal optical depth of macroscopic ring particles of 1.3x10^-5 (1.4x10^-6), 1.1x10^-5 (1.2x10^-6), 6.4x10^-6 (6.7x10^-7), respectively. Were the New Horizons spacecraft to fly through a ring system with optical depth of 1.3x10^-5, it would collide with a significant number of potentially damaging ring particles. We therefore recommend that unless tighter constraints can be obtained, New Horizons cross the putative ring plane within 42,000 km of the Pluto-Charon barycenter, where rings are dynamically unstable. We derive a crude estimate of the lifetime of putative ring paritcles of 900 years.
Observations of Pluto and its solar-tidal stability zone were made using the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) on the Hubble Space Telescope on UT 2005 May 15 and UT 2005 May 18. Two small satellites of Pluto, provisionally d
The goal of this chapter is to review hypotheses for the origin of the Pluto system in light of observational constraints that have been considerably refined over the 85-year interval between the discovery of Pluto and its exploration by spacecraft.
We searched for dust or debris rings in the Pluto-Charon system before, during, and after the New Horizons encounter. Methodologies included searching for back-scattered light during the approach to Pluto (phase $sim15^circ$), in situ detection of im
The Pluto-Charon binary system is the best-studied representative of the binary Kuiper-belt population. Its origins are vital to understanding the formation of other Kupier-belt objects (KBO) and binaries, and the evolution of the outer solar-system.
Pluto and its five known satellites form a complex dynamic system. Here we explore where additional satellites could exist exterior to Charon (the innermost moon) but interior of Hydra (the outermost). We also provide dynamical constraints for the ma