ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy bimodality versus stellar mass and environment

36   0   0.0 ( 0 )
 نشر من قبل Ivan K. Baldry
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse a z<0.1 galaxy sample from the Sloan Digital Sky Survey focusing on the variation of the galaxy colour bimodality with stellar mass and projected neighbour density Sigma, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about 10^10.6 Msun to 10^10.9 Msun (Kroupa IMF, H_0=70) for Sigma in the range 0.1--10 per Mpc^2. The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour-mass and colour-concentration index not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in log Sigma and log mass (12 x 13 bins). The red fraction f_r generally increases continuously in both Sigma and mass such that there is a unified relation: f_r = F(Sigma,mass). Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N-body simulation: the Bower et al. (2006) and Croton et al. (2006) models that incorporate AGN feedback. Both models predict a strong dependence of the red fraction on stellar mass and environment that is qualitatively similar to the observations. However, a quantitative comparison shows that the Bower et al. model is a significantly better match; this appears to be due to the different treatment of feedback in central galaxies.


قيم البحث

اقرأ أيضاً

The scatter in the galaxy size versus stellar mass (Mstar) relation gets largely reduced when, rather than the half-mass radius Re, the size at a fixed surface density is used. Here we address why this happens. We show how a reduction is to be expect ed because any two galaxies with the same Mstar have at least one radius with identical surface density, where the galaxies have identical size. However, the reason why the scatter is reduced to the observed level is not trivial, and we pin it down to the galaxy surface density profiles approximately following Sersic profiles with their Re and Sersic index (n) anti-correlated (i.e., given Mstar, n increases when Re decreases). Our analytical results describe very well the behavior of the observed galaxies as portrayed in the NASA Sloan Atlas (NSA), which contains more than half a million local objects with 7 < log(Mstar/Msun) < 11.5. The comparison with NSA galaxies also allows us to find the optimal values for the mass surface density (2.4m0.9p1.3 Msun/pc2) and surface brightness (r-band 24.7pm0.5 mag/arcsec2) that minimize the scatter, although the actual values depend somehow on the subset of NSA galaxies used for optimization. The physical reason for the existence of optimal values is unknown but, as Trujillo+20 point out, they are close to the gas surface density threshold to form stars and thus may trace the physical end of a galaxy. Our NSA-based size--mass relation agrees with theirs on the slope as well as on the magnitude of the scatter. As a by-product of the narrowness of the size--mass relation (only 0.06 dex), we propose to use the size of a galaxy to measure its stellar mass. In terms of observing time, it is not more demanding than the usual photometric techniques and may present practical advantages in particular cases.
Recent observations reveal that, at a given stellar mass, blue galaxies tend to live in haloes with lower mass while red galaxies live in more massive host haloes. The physical driver behind this is still unclear because theoretical models predict th at, at the same halo mass, galaxies with high stellar masses tend to live in early-formed haloes which naively leads to an opposite trend. Here, we show that the {sc Simba} simulation quantitatively reproduces the colour bimodality in SHMR and reveals an inverse relationship between halo formation time and galaxy transition time. It suggests that the origin of this bimodality is rooted in the intrinsic variations of the cold gas content due to halo assembly bias. {sc Simba}s SHMR bimodality quantitatively relies on two aspects of its input physics: (1) Jet-mode AGN feedback, which quenches galaxies and sets the qualitative trend; and (2) X-ray AGN feedback, which fully quenches galaxies and yields better agreement with observations. The interplay between the growth of cold gas and the AGN quenching in {sc Simba} results in the observed SHMR bimodality.
We measure the mass functions for generically red and blue galaxies, using a z < 0.12 sample of log M* > 8.7 field galaxies from the Galaxy And Mass Assembly (GAMA) survey. Our motivation is that, as we show, the dominant uncertainty in existing meas urements stems from how red and blue galaxies have been selected/defined. Accordingly, we model our data as two naturally overlapping populations, each with their own mass function and colour-mass relation, which enables us characterise the two populations without having to specify a priori which galaxies are red and blue. Our results then provide the means to derive objective operational definitions for the terms red and blue, which are based on the phenomenology of the colour-mass diagrams. Informed by this descriptive modelling, we show that: 1.) after accounting for dust, the stellar colours of blue galaxies do not depend strongly on mass; 2.) the tight, flat dead sequence does not extend much below log M* ~ 10.5; instead, 3.) the stellar colours of red galaxies vary rather strongly with mass, such that lower mass red galaxies have bluer stellar populations; 4.) below log M* ~ 9.3, the red population dissolves into obscurity, and it becomes problematic to talk about two distinct populations; as a consequence, 5.) it is hard to meaningfully constrain the shape, including the possibility of an upturn, of the red galaxy mass function below log M* ~ 9. Points 1-4 provide meaningful targets for models of galaxy formation and evolution to aim for.
Galaxies in the local Universe are known to follow bimodal distributions in the global stellar populations properties. We analyze the distribution of the local average stellar-population ages of 654,053 sub-galactic regions resolved on ~1-kpc scales in a volume-corrected sample of 394 galaxies, drawn from the CALIFA-DR3 integral-field-spectroscopy survey and complemented by SDSS imaging. We find a bimodal local-age distribution, with an old and a young peak primarily due to regions in early-type galaxies and star-forming regions of spirals, respectively. Within spiral galaxies, the older ages of bulges and inter-arm regions relative to spiral arms support an internal age bimodality. Although regions of higher stellar-mass surface-density, mu*, are typically older, mu* alone does not determine the stellar population age and a bimodal distribution is found at any fixed mu*. We identify an old ridge of regions of age ~9 Gyr, independent of mu*, and a young sequence of regions with age increasing with mu* from 1-1.5 Gyr to 4-5 Gyr. We interpret the former as regions containing only old stars, and the latter as regions where the relative contamination of old stellar populations by young stars decreases as mu* increases. The reason why this bimodal age distribution is not inconsistent with the unimodal shape of the cosmic-averaged star-formation history is that i) the dominating contribution by young stars biases the age low with respect to the average epoch of star formation, and ii) the use of a single average age per region is unable to represent the full time-extent of the star-formation history of young-sequence regions.
We investigate the impact of local environment on the galaxy stellar mass function (SMF) spanning a wide range of galaxy densities from the field up to dense cores of massive galaxy clusters. Data are drawn from a sample of eight fields from the Obse rvations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. Deep photometry allow us to select mass-complete samples of galaxies down to 10^9 Msol. Taking advantage of >4000 secure spectroscopic redshifts from ORELSE and precise photometric redshifts, we construct 3-dimensional density maps between 0.55<z<1.3 using a Voronoi tessellation approach. We find that the shape of the SMF depends strongly on local environment exhibited by a smooth, continual increase in the relative numbers of high- to low-mass galaxies towards denser environments. A straightforward implication is that local environment proportionally increases the efficiency of (a) destroying lower-mass galaxies and/or (b) growth of higher-mass galaxies. We also find a presence of this environmental dependence in the SMFs of star-forming and quiescent galaxies, although not quite as strongly for the quiescent subsample. To characterize the connection between the SMF of field galaxies and that of denser environments we devise a simple semi-empirical model. The model begins with a sample of ~10^6 galaxies at z_start=5 with stellar masses distributed according to the field. Simulated galaxies then evolve down to z_final=0.8 following empirical prescriptions for star-formation, quenching, and galaxy-galaxy merging. We run the simulation multiple times, testing a variety of scenarios with differing overall amounts of merging. Our model suggests that a large number of mergers are required to reproduce the SMF in dense environments. Additionally, a large majority of these mergers would have to occur in intermediate density environments (e.g. galaxy groups).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا