ﻻ يوجد ملخص باللغة العربية
We carry on a new analysis of the sample of MACHO microlensing candidates towards the LMC. Our main purpose is to determine the lens population to which the events may belong. We give particular emphasis to the possibility of characterizing the Milky Way dark matter halo population with respect to the LMC one. Indeed, we show that only a fraction of the events have characteristics that match those expected for lenses belonging to the MACHO population of the Milky Way halo. This suggests that this component cannot explain all the candidates. Accordingly, we challenge the view that the dark matter halo fraction of both the Milky Way and the LMC halos are equal, and indeed we show that, for a MACHO mass in the range 0.1-0.3 M$_odot$, the LMC halo fraction can be significantly larger than the Milky Way one. In this perspective, our main conclusion is that up to about half of the observed events could be attributed to the LMC MACHO dark matter halo.
(Short version) The nature and the location of the lenses discovered in the microlensing surveys done so far towards the LMC remain unclear. This contribution is comprised of two distinct parts. In the first part, motivated by these questions, we com
We present an analysis of the results of the OGLE-III microlensing campaign towards the Large Magellanic Cloud (LMC). We evaluate for all the possible lens populations along the line of sight the expected microlensing quantities, number of events and
In a recent series of three papers, Belokurov, Evans, and Le Du, and Evans and Belokurov, reanalysed the MACHO collaboration data and gave alternative sets of microlensing events and an alternative optical depth to microlensing toward the Large Magel
We present the results from the OGLE-II survey (1996-2000) towards the Large Magellanic Cloud (LMC), which has the aim of detecting the microlensing phenomena caused by dark matter compact objects in the Galactic Halo (Machos). We use high resoluti
We report on our search for microlensing towards the Large Magellanic Cloud (LMC). Analysis of 5.7 years of photometry on 11.9 million stars in the LMC reveals 13 - 17 microlensing events. This is significantly more than the $sim$ 2 to 4 events expec