ﻻ يوجد ملخص باللغة العربية
Diffuse emission in the mid-infrared shows a wealth of structure, that lends itself to high-resolution structure analysis of the interstellar gas. A large part of the emission comes from polycyclic aromatic hydrocarbons, excited by nearby ultra-violet sources. Can the observed diffuse emission structure be interpreted as column density structure? We discuss this question with the help of a set of model molecular clouds bathed in the radiation field of a nearby O-star. The correlation strength between column density and ``observed flux density strongly depends on the absolute volume density range in the region. Shadowing and irradiation effects may completely alter the appearance of an object. Irradiation introduces additional small-scale structure and it can generate structures resembling shells around HII-regions in objects that do not possess any shell-like structures whatsoever. Nevertheless, structural information about the underlying interstellar medium can be retrieved. In the more diffuse regime ($n({HI})lesssim 100$cm$^{-3}$), flux density maps may be used to trace the 3D density structure of the cloud via density gradients. Thus, while caution definitely is in order, mid-infrared surveys such as GLIMPSE will provide quantitative insight into the turbulent structure of the interstellar medium.
Observations of star-forming galaxies in the distant Universe (z > 2) are starting to confirm the importance of massive stars in shaping galaxy emission and evolution. Inevitably, these distant stellar populations are unresolved, and the limited data
This review focuses on the current status of lattice calculations of three observables which are both phenomenologically and experimentally relevant and have been scrutinized recently. These three observables are the nucleon electromagnetic form fact
The effect of magnetic fields on the frequencies of toroidal oscillations of neutron stars is derived to lowest order. Interpreting the fine structure in the QPO power spectrum of magnetars following giant flares reported by Strohmayer and Watts (200
Combining insights from both the effective field theory of quantum gravity and black hole thermodynamics, we derive two novel consistency relations to be satisfied by any quantum theory of gravity. First, we show that a particular combination of the
Laboratory experiments can shed light on theories of new physics introduced in order to explain cosmological mysteries, including the nature of dark energy and dark matter. In this article I will focus on one particular example of this, the chameleon