ترغب بنشر مسار تعليمي؟ اضغط هنا

New VLA observations of the SNR Puppis A: the radio properties and the correlatoin withe the X-ray emission

357   0   0.0 ( 0 )
 نشر من قبل Kumar Golap
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we report on a new study of the SNR Puppis A based on VLA observations at 1425 MHz; the improvement represents a factor of two in angular resolution and almost ten times in sensitivity compared to the best previous image of Puppis A. This new image is used to compare with re-processed 327 MHz data and ROSAT and Chandra images to investigate morphological and spectral characteristics.

قيم البحث

اقرأ أيضاً

We present new Very Large Array (VLA) radio images at 74 and 324 MHz of the SNR W44. The VLA images, obtained with unprecedented angular resolution and sensitivity for such low frequencies have been used in combination with existing 1442 MHz radio da ta, Spitzer IR data, and ROSAT and Chandra X-ray data to investigate morphological and spectral properties of this SNR. The spatially resolved spectral index study revealed that the bright filaments, both around and across the SNR, have a straight spectrum between 74 and 1442 MHz, with alpha ~ -0.5, with two clear exceptions: a short portion of the SNR limb to the southeast, with alpha varying between 0 and +0.4 and a bright arc to the west where the spectrum breaks around 300 MHz and looks concave down. We conclude that at the shell and along the internal filaments, the electrons responsible for the synchrotron emission were accelerated at the shock according to a simple diffusive shock model; the positive spectrum corresponds to a location where the SN shock is running into a molecular cloud and where the line of sight intersects the photo dissociation region of an HII region and a young stellar object is present. The curved spectrum on the westernmost bright arc is explained as the consequence of strong post-shock densities and enhanced magnetic fields after the interaction of the SN shock with a collindant molecular cloud.
The Vela and Puppis A supernova remnants (SNRs) comprise a large emission region of $sim 8^{circ}$ diameter in the soft X-ray sky. The HaloSat CubeSat mission provides the first soft X-ray ($0.4-7$ keV) observation of the entire Vela SNR and Puppis A SNR region with a single pointing and moderate spectral resolution. HaloSat observations of the Vela SNR are best fit with a two-temperature thermal plasma model consisting of a cooler component with $kT_{1} = 0.19^{+0.01}_{-0.01}$ keV in collisional ionization equilibrium and a hotter component with $kT_{2} = 1.06^{+0.45}_{-0.27}$ keV in non-equilibrium ionization. Observations of the Puppis A SNR are best fit with a single-component plane-parallel shocked plasma model with $kT = 0.86^{+0.06}_{-0.05}$ keV in non-equilibrium ionization. For the first time, we find the total X-ray luminosities of both components of the Vela SNR spectrum in the $0.5-7$ keV energy band to be $L_X = 4.4^{+1.4}_{-1.4} times 10^{34}$ erg s$^{-1}$ for the cooler component and $L_X = 4.1^{+1.8}_{-1.5} times 10^{34}$ erg s$^{-1}$ for the hotter component. We find the total X-ray luminosities of the Vela and Puppis A SNRs to be $L_{text{X}} = 8.4 times 10^{34}$ erg s$^{-1}$ and $L_X = 6.7^{+1.1}_{-0.9} times 10^{36}$ erg s$^{-1}$.
We present the results of the ongoing XMM-Newton survey of M31. 17 X-ray sources detected in the survey have bright radio counterparts, and 15 X-ray sources coincide with SNR candidates from optical and radio surveys. 15 out of 17 sources with radio counterparts, not SNR candidates, have spectral properties similar to that observed for background radio galaxies/quasars or Crab-like supernova remnants located in M31. The remaining two sources, XMMU J004046.8+405525 and XMMU J004249.1+412407, have soft X-ray spectra, and are associated with spatially resolved H-alpha emission regions, which makes them two new SNR candidates in M31. The observed absorbed X-ray luminosities of SNR candidates in our sample range from 1e35 to 5e36 ergs/s, assuming the distance of 760 kpc. Most of the SNR candidates detected in our survey have soft X-ray spectra. The spectra of the brightest sources show presence of emission lines and can be fit by thermal plasma models with kT~0.1-0.4 keV. The results of spectral fitting of SNR candidates suggest that most of them should be located in a relatively low density regions. We show that X-ray color-color diagrams can be useful tool for distinguishing between intrinsically hard background radio sources and Crab-like SNR and thermal SNR in M31 with soft spectra.
180 - G. Castelleti 2003
We report new high resolution and high sensitivity radio observations of the extended supernova remnant (SNR) CTB 80 (G69.0+2.7) at 240 MHz, 324 MHz, 618 MHz, and 1380 MHz. The imaging of CTB 80 at 240 MHz and 618 MHz was performed using the Giant Me trewave Radio Telescope (GMRT) in India. The observations at 324 MHz and 1380 MHz were obtained using the Very Large Array (VLA, NRAO) in its C and D configurations. The new radio images reveal faint extensions for the asymmetric arms of CTB 80. The arms are irregular with filaments and clumps of size 1 (or 0.6 pc at a distance of 2 kpc). The radio image at 1380 MHz is compared with IR and optical emission. The correspondence IR/radio is excellent along the N arm of CTB 80. Ionized gas observed in the [SII] line perfectly matches the W and N edges of CTB 80. The central nebula associated with the pulsar PSR B1951+32 was investigated with an angular resolution of 10 x 6. The new radio image obtained at 618 MHz shows with superb detail structures in the 8 x 4 E-W ``plateau nebula that hosts the pulsar on its western extreme. A twisted filament, about 6 in extent (~3.5 pc), trails behind the pulsar in an approximate W-E direction. In the bright ``core nebula (size ~45), located to the W of the plateau, the images show a distortion in the morphology towards the W; this feature corresponds to the direction in which the pulsar escapes from the SNR with a velocity of ~240 km/s. Based on the new observations, the energetics of the SNR and of the PWN are investigated.
71 - G. J. M. Luna 2016
We introduce a distinct method to perform spatially-resolved spectral analysis of astronomical sources with highly structured X-ray emission. The method measures the surface brightness of neighbouring pixels to adaptively size and shape each region, thus the spectra from the bright and faint filamentary structures evident in the broadband images can be extracted. As a test case, we present the spectral analysis of the complete X-ray emitting plasma in the supernova remnant Puppis A observed with XMM-Newton and Chandra. Given the angular size of Puppis A, many pointings with different observational configurations have to be combined, presenting a challenge to any method of spatially-resolved spectroscopy. From the fit of a plane-parallel shocked plasma model we find that temperature, absorption column, ionization time scale, emission measure and elemental abundances of O, Ne, Mg, Si, S and Fe, are smoothly distributed in the remnant. Some regions with overabundances of O-Ne-Mg, previously characterized as ejecta material, were automatically selected by our method, proving the excellent response of the technique. This method is an advantageous tool for the exploitation of archival X-ray data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا