ترغب بنشر مسار تعليمي؟ اضغط هنا

Microlensing variability in time-delay quasars

70   0   0.0 ( 0 )
 نشر من قبل Danuta Paraficz DP
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have searched for microlensing variability in the light curves of five gravitationally lensed quasars with well-determined time delays: SBS 1520+530, FBQ 0951+2635, RX J0911+0551, B1600+434 and HE 2149-2745. By comparing the light curve of the leading image with a suitably time offset light curve of a trailing image we find that two (SBS 1520+530 and FBQ 0951+2635) out of the five quasars have significant long-term (years) and short-term (100 days) brightness variations that may be attributed to microlensing.The short-term variations may be due to nanolenses, relativistic hot or cold spots in the quasar accretion disks, or coherent microlensing at large optical depth.



قيم البحث

اقرأ أيضاً

268 - J.H.H. Chan , K. Rojas , M. Millon 2020
Time-delay cosmography in strongly lensed quasars offer an independent way of measuring the Hubble constant, $H_0$. However, it has been proposed that the combination of microlensing and source-size effects, also known as microlensing time delay can potentially increase the uncertainty in time-delay measurements as well as lead to a biased time delay. In this work, we first investigate how microlensing time delay changes with assumptions on the initial mass function (IMF) and find that the more massive microlenses produce the sharper distributions of microlensing time delays. We also find that the IMF has modest effect on the the magnification probability distributions. Second, we present a new method to measure the color-dependent source size in lensed quasars using the microlensing time delays inferred from multi-band light curves. In practice the relevant observable is the differential microlensing time delays between different bands. We show from simulation using the facility as Vera C. Rubin Observatory that if this differential time delay between bands can be measured with a precision of $0.1$ days in any given lensed image, the disk size can be recovered to within a factor of $2$. If four lensed images are used, our method is able to achieve an unbiased source measurement within error of the order of $20%$, which is comparable with other techniques.
Aims:In some of the lensed quasars, color differences between multiple images are observed at optical/near-infrared wavelengths. There are three possible origins of the color differences: intrinsic variabilities of quasars, differential dust extincti on, and quasar microlensing. We examine how these three possible scenarios can reproduce the observed chromaticity. Methods:We evaluate how much color difference between multiple images can be reproduced by the above three possible scenarios with realistic models; (i) an empirical relation for intrinsic variabilities of quasars, (ii) empirical relations for dust extinction and theoretically predicted inhomogeneity in galaxies, or (iii) a theoretical model for quasar accretion disks and magnification patterns in the vicinity of caustics. Results:We find that intrinsic variabilities of quasars cannot be a dominant source responsible for observed chromatic features in multiple quasars. In contrast, either dust extinction or quasar microlensing can nicely reproduce the observed color differences between multiple images in most of the lensed quasars. Taking into account the time interval between observations at different wavebands in our estimations, quasar microlensing is a more realistic scenario to reproduce the observed color differences than dust extinction. All the observed color differences presented in this paper can be explained by a combination of these two effects, but monitoring observations at multiple wavebands are necessary to disentangle these.
We present V and R photometry of the gravitationally lensed quasars WFI2033-4723 and HE0047-1756. The data were taken by the MiNDSTEp collaboration with the 1.54 m Danish telescope at the ESO La Silla observatory from 2008 to 2012. Differential photo metry has been carried out using the image subtraction method as implemented in the HOTPAnTS package, additionally using GALFIT for quasar photometry. The quasar WFI2033-4723 showed brightness variations of order 0.5 mag in V and R during the campaign. The two lensed components of quasar HE0047-1756 varied by 0.2-0.3 mag within five years. We provide, for the first time, an estimate of the time delay of component B with respect to A of $Delta t= 7.6pm1.8$ days for this object. We also find evidence for a secular evolution of the magnitude difference between components A and B in both filters, which we explain as due to a long-duration microlensing event. Finally we find that both quasars WFI2033-4723 and HE0047-1756 become bluer when brighter, which is consistent with previous studies.
127 - Kai Liao 2020
Microlensing not only brings extra magnification lightcurves on top of the intrinsic ones but also shifts them in time domain, making the actual time-delays between images of strongly lensed active galactic nucleus change on the $sim$ day(s) light-cr ossing time scale of the emission region. The microlensing-induced time-delays would bias strong lens time-delay cosmography if uncounted. However, due to the uncertainties of the disk size and the disk model, the impact is hard to accurately estimate. In this work, we study how to reduce the bias with designed observation strategy based on a standard disk model. We find long time monitoring of the images could alleviate the impact since it averages the microlensing time-lag maps due to the peculia motion of the source relative to the lens galaxy. In addition, images in bluer bands correspond to smaller disk sizes and therefore benefit time-delay measurements as well. We conduct a simulation based on a PG 1115+080-like lensed quasar. The results show the time-delay dispersions caused by microlensing can be reduced by $sim40%$ with 20-year lightcurves while u band relative to r band reduces $sim75%$ of the dispersions. Nevertheless, such an effect can not be totally eliminated in any cases. Further studies are still needed to appropriately incorporate it in inferring an accurate Hubble constant.
Significant progress in the description of quasar variability has been recently made by employing SDSS and POSS data. Common to most studies is a fundamental assumption that photometric observations at two epochs for a large number of quasars will re veal the same statistical properties as well-sampled light curves for individual objects. We critically test this assumption using light curves for a sample of $sim$2,600 spectroscopically confirmed quasars observed about 50 times on average over 8 years by the SDSS stripe 82 survey. We find that the dependence of the mean structure function computed for individual quasars on luminosity, rest-frame wavelength and time is qualitatively and quantitatively similar to the behavior of the structure function derived from two-epoch observations of a much larger sample. We also reproduce the result that the variability properties of radio and X-ray selected subsamples are different. However, the scatter of the variability structure function for fixed values of luminosity, rest-frame wavelength and time is similar to the scatter induced by the variance of these quantities in the analyzed sample. Hence, our results suggest that, although the statistical properties of quasar variability inferred using two-epoch data capture some underlying physics, there is significant additional information that can be extracted from well-sampled light curves for individual objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا