ﻻ يوجد ملخص باللغة العربية
We present a satellite mission concept to measure the dark energy equation of state parameter w with percent-level precision. The Very Ambitious Dark Energy Research satellite (VADER) is a multi-wavelength survey mission joining X-ray, optical, and IR instruments for a simultaneous spectral coverage from 4microns (0.3eV) to 10keV over a field of view (FoV) of 1 square degree. VADER combines several clean methods for dark energy studies, the baryonic acoustic oscillations in the galaxy and galaxy cluster power spectrum and weak lensing, for a joint analysis over an unrivalled survey volume. The payload consists of two XMM-like X-ray telescopes with an effective area of 2,800cm^2 at 1.5keV and state-of-the-art wide field DEPFET pixel detectors (0.1-10keV) in a curved focal plane configuration to extend the FoV. The X-ray telescopes are complemented by a 1.5m optical/IR telescope with 8 instruments for simultaneous coverage of the same FoV from 0.3 to 4 microns. The 8 dichroic-separated bands (u,g,r,z,J,H,K,L) provide accurate photometric galaxy redshifts, whereas the diffraction-limited resolution of the central z-band allows precise shape measurements for cosmic shear analysis. The 5 year VADER survey will cover a contiguous sky area of 3,500 square degrees to a depth of z~2 and will yield accurate photometric redshifts and multi-wavelength object parameters for about 175,000 galaxy clusters, one billion galaxies, and 5 million AGN. VADER will not only provide unprecedented constraints on the nature of dark energy, but will additionally extend and trigger a multitude of cosmic evolution studies to very large (>10 Gyrs) look-back times.
Starting around 2013, data from the Large Synoptic Survey Telescope (LSST) will be analyzed for a wide range of phenomena. By separately tracing the development of mass structure and rate of expansion of the universe, these data will address the phys
Gamma ray bursts (GRBs) are the most energetic eruptions known in the Universe. Instruments such as Compton-GRO/BATSE and the GRB monitor on BeppoSAX have detected more than 2700 GRBs and, although observational confirmation is still required, it is
Destiny is a simple, direct, low cost mission to determine the properties of dark energy by obtaining a cosmologically deep supernova (SN) type Ia Hubble diagram. Operated at L2, its science instrument is a 1.65m space telescope, featuring a grism-fe
The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond prompt
Quantum mechanical metric fluctuations during an early inflationary phase of the universe leave a characteristic imprint in the polarization of the cosmic microwave background (CMB). The amplitude of this signal depends on the energy scale at which i