ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for variable outflows in the Young Stellar Object V645 Cygni

257   0   0.0 ( 0 )
 نشر من قبل Andrew Clarke
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As part of the Red MSX Source Survey of Massive Young Stellar Objects (MYSOs) we have conducted multi-wavelength follow up observations of the well-known object V645 Cygni. We present our data on this object, whose near-infrared spectrum is exceptional and place these in context with previous observations. Our observations of V645 Cyg included near/mid infrared imaging observations, 13CO 2-1 line observations and high signal-to-noise velocity resolved near-infrared spectroscopy. The spectrum shows P-Cygni hydrogen Brackett emission, consistent with a high velocity stellar wind. A red-shifted emission component to a number of near-IR emission lines was also uncovered. This is associated with a similar component in the H alpha line. V645 Cyg is also found to have variable CO first overtone bandhead emission. The data clearly indicate that the outflow of V645 Cyg is variable. The unidentified feature in a previously published optical spectrum is identified with a receding outflow at 2000 km per second. The nature of this feature, which is found in hydrogen and helium atomic lines and CO molecular lines remains a puzzle.

قيم البحث

اقرأ أيضاً

Results from BVRI photometric observations of the pre-main sequence star V1704 Cyg collected during the time period from August 2010 to December 2017 are presented. The star is located in the star-forming HII region IC 5070 and it exhibits photometri c variability in all-optical passbands. After analyzing the obtained data, V1704 Cyg is classified as a classical T Tauri star.
Results from the BV(RI)c photometric observations of the young stellar object V2492 Cyg collected in the period from April 2018 to September 2020 are presented. These observations are a part of our monitoring of the star that began in 2010 and contin uing to date. V2492 Cyg is located in the Pelican Nebula, and its variability was explained by both accretion and extinction events. The new photometric data show that the star continues to exhibit rapid irregular variability in all bands. In the period from March 2019 to May 2020, we registered a prolonged decrease event in the light curve of V2492 Cyg.
403 - Minjin Kim 2013
We present near-infrared spectra of young radio quasars [P(1.4GHz) ~ 26-27 W/Hz] selected from the Wide-Field Infrared Survey Explorer. The detected objects have typical redshifts of z ~ 1.6-2.5 and bolometric luminosities ~ 10^47 erg/s. Based on the intensity ratios of narrow emission lines, we find that these objects are mainly powered by active galactic nuclei (AGNs), although star formation contribution cannot be completely ruled out. The host galaxies experience moderate levels of extinction, A(V) ~ 0-1.3 mag. The observed [O III] luminosities and rest-frame J-band magnitudes constrain the black hole masses to lie in the range ~ 10^8.9-10^9.7 solar mass. From the empirical correlation between black hole mass and host galaxy mass, we infer stellar masses of ~ 10^11.3-10^12.2 solar mass. The [O III] line is exceptionally broad, with full width at half maximum ~1300 to 2100 km/s, significantly larger than that of ordinary distant quasars. We argue that these large line widths can be explained by jet-induced outflows, as predicted by theoretical models of AGN feedback.
58 - John Richer 1999
We review some aspects of the bipolar molecular outflow phenomenon. In particular, we compare the morphological properties, energetics and velocity structures of outflows from high and low-mass protostars and investigate to what extent a common sourc e model can explain outflows from sources of very different luminosities. Many flow properties, in particular the CO spatial and velocity structure, are broadly similar across the entire luminosity range, although the evidence for jet-entrainment is still less clear cut in massive flows than in low-mass systems. We use the correlation of flow momentum deposition rate with source luminosity to estimate the ratio f of mass ejection to mass accretion rate. From this analysis, it appears that a common driving mechanism could operate across the entire luminosity range. However, we stress that for the high-mass YSOs, the detailed physics of this mechanism and how the ejected wind/jet entrains ambient material remain to be addressed. We also briefly consider the alternative possibility that high-mass outflows can be explained by the recently proposed circulation models, and discuss several shortcomings of those models. Finally, we survey the current evidence on the nature of the shocks driven by YSOs during their pre-main-sequence evolution.
We report the discovery of a likely outbursting Class I young stellar object, associated with the star-forming region NGC 281-W (distance $sim 2.8$ kpc). The source is currently seen only at infrared wavelengths, appearing in both the Palomar Gattini InfraRed ($1.2~mu$m) and the Near Earth Object Widefield Infrared Survey Explorer ($3.4$ and $4.6~mu$m) photometric time-domain surveys. Recent near-infrared imaging reveals a new, extended scattered light nebula. Recent near-infrared spectroscopy confirms the similarity of PGIR 20dci to FU Ori type sources, based on strong molecular absorption in CO, H$_2$O, and OH, weak absorption in several atomic lines, and a warm wind/outflow as indicated by a P Cygni profile in the HeI 10830 A line. This is a rare case of an FU Ori star with a well-measured long term photometric rise before a sharper outburst, and the second instance of an FU Ori star with a documented two-step brightening in the mid-infrared.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا