ﻻ يوجد ملخص باللغة العربية
It has been known for more than 30 years that star formation in giant molecular clouds (GMCs) is slow, in the sense that only ~1% of the gas forms stars every free-fall time. This result is entirely independent of any particular model of molecular cloud lifetime or evolution. Here we survey observational data on higher density objects in the interstellar medium, including infrared dark clouds and dense molecular clumps, to determine if these objects form stars slowly like GMCs, or rapidly, converting a significant fraction of their mass into stars in one free-fall time. We find no evidence for a transition from slow to rapid star formation in structures covering three orders of magnitude in density. This has important implications for models of star formation, since competing models make differing predictions for the characteristic density at which star formation should transition from slow to rapid. The data are inconsistent with models that predict that star clusters form rapidly and in free-fall collapse. Magnetic- and turbulence-regulated star formation models can reproduce the observations qualitatively, and the turbulence-regulated star formation model of Krumholz & McKee quantitatively reproduces the infrared-HCN luminosity correlation recently reported by Gao & Solomon. Slow star formation also implies that the process of star cluster formation cannot be one of global collapse, but must instead proceed over many free-fall times. This suggests that turbulence in star-forming clumps must be driven, and that the competitive accretion mechanism does not operate in typical cluster-forming molecular clumps.
We report results of a project to map HCN and HCO+ J = 1-0 emission toward a sample of molecular clouds in the inner Galaxy, all containing dense clumps that are actively engaged in star formation. We compare these two molecular line tracers with mil
An imaging survey of CO(1-0), HCN(1-0), and HCO$^+$(1-0) lines in the centers of nearby Seyfert galaxies has been conducted using the Nobeyama Millimeter Array and the RAINBOW interferometer. Preliminary results reveal that 3 Seyferts out of 7 show a
We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate, and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1-0),
We use the CARMA millimeter interferometer to map the Antennae Galaxies (NGC4038/39), tracing the bulk of the molecular gas via the 12CO(1-0) line and denser molecular gas via the high density transitions HCN(1-0), HCO+(1-0), CS(2-1), and HNC(1-0). W
We report a sensitive search for the HCN(J=2-1) emission line towards SDSS J1148+5251 at z=6.42 with the VLA. HCN emission is a star formation indicator, tracing dense molecular hydrogen gas (n(H2) >= 10^4 cm^-3) within star-forming molecular clouds.