ﻻ يوجد ملخص باللغة العربية
New optical spectra have been obtained with VLT/FORS2 of the final helium shell flash (FF) star, V605 Aql, which peaked in brightness in 1919. New models suggest that this star is experiencing a very late thermal pulse. The evolution to a cool luminous giant and then back to a compact hot star takes place in only a few years. V605 Aql, the central star of the Planetary Nebula (PN), A58, has evolved from T$_{eff}sim$5000 K in 1921 to $sim$95,000 K today. There are indications that the new FF star, Sakurais Object (V4334 Sgr), which appeared in 1996, is evolving along a similar path. The abundances of Sakurais Object today and V605 Aql 80 years ago mimic the hydrogen deficient R Coronae Borealis (RCB) stars with 98% He and 1% C. The new spectra show that V605 Aql has stellar abundances similar to those seen in Wolf-Rayet [WC] central stars of PNe with ~55% He, and ~40% C. The stellar spectrum of V605 Aql can be seen even though the star is not directly detected. Therefore, we may be seeing the spectrum in light scattered around the edge of a thick torus of dust seen edge-on. In the present state of evolution of V605 Aql, we may be seeing the not too distant future of Sakurais Object.
V4334 Sgr (a.k.a. Sakurais object) is the central star of an old planetary nebula that underwent a very late thermal pulse a few years before its discovery in 1996. We have been monitoring the evolution of the optical emission line spectrum since 200
We investigate the reheating of the very late thermal pulse (VLTP) object V4334 Sgr (Sakurais Object) using radio observations from the Very Large Array, and optical spectra obtained with the Very Large Telescope. We find a sudden rise of the radio f
We present an observation of the very late thermal pulse object V4334 Sgr (Sakurais Object) with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope. The emission from 5-38 microns is dominated by the still-cooling dust shell. A number of
In 1996, Sakurais object (V4334 Sgr) suddenly brightened in the centre of a faint Planetary Nebula (PN). This very rare event was interpreted as the reignition of a hot white dwarf that caused a rapid evolution back to the cool giant phase. From 1998
We present observations of Sakurais Object obtained at 1-5um between 2003 and 2007. By fitting a radiative transfer model to an echelle spectrum of CO fundamental absorption features around 4.7um, we determine the excitation conditions in the line-fo