ترغب بنشر مسار تعليمي؟ اضغط هنا

The Red Halo Phenomenon

48   0   0.0 ( 0 )
 نشر من قبل Erik Zackrisson
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical and near-IR observations of the halos of disk galaxies and blue compact galaxies have revealed a very red spectral energy distribution, which cannot easily be reconciled with a normal, metal-poor stellar population like that in the stellar halo of the Milky Way. Here, spectral evolutionary models are used to explore the consequences of these observations. We demonstrate that a stellar population of low to intermediate metallicity, but with an extremely bottom-heavy initial mass function, can explain the red halos around both types of objects. Other previously suggested explanations, like nebular emission or very metal-rich stars, are shown to fail in this respect. This indicates that, if the reported halo colours are correct, halo populations dominated by low-mass stars may be a phenomenon common to galaxies of very different Hubble types. Potential tests of this hypothesis are discussed, along with its implications for the baryonic dark matter content of galaxies.



قيم البحث

اقرأ أيضاً

We have traced the past 7 Gyr of red galaxy stellar mass growth within dark matter halos. We have determined the halo occupation distribution, which describes how galaxies reside within dark matter halos, using the observed luminosity function and cl ustering of 40,696 0.2<z<1.0 red galaxies in Bootes. Half of 10^{11.9} Msun/h halos host a red central galaxy, and this fraction increases with increasing halo mass. We do not observe any evolution of the relationship between red galaxy stellar mass and host halo mass, although we expect both galaxy stellar masses and halo masses to evolve over cosmic time. We find that the stellar mass contained within the red population has doubled since z=1, with the stellar mass within red satellite galaxies tripling over this redshift range. In cluster mass halos most of the stellar mass resides within satellite galaxies and the intra-cluster light, with a minority of the stellar mass residing within central galaxies. The stellar masses of the most luminous red central galaxies are proportional to halo mass to the power of a third. We thus conclude that halo mergers do not always lead to rapid growth of central galaxies. While very massive halos often double in mass over the past 7 Gyr, the stellar masses of their central galaxies typically grow by only 30%.
Aims: AT 2018hso is a new transient showing transitional properties between those of LRNe and the class of intermediate luminosity red transients (ILRTs) similar to SN 2008S. Through the detailed analysis of the observed parameters, our study support that it actually belongs to the LRN class, and was likely produced by the coalescence of two massive stars. Methods: We obtained ten months of optical and near-infrared photometric monitoring, and eleven epochs of low-resolution optical spectroscopy of AT~2018hso. We compared its observed properties with those of other ILRTs and LRNe. We also inspected the archival Hubble Space Telescope (HST) images obtained about 15 years ago to constrain the progenitors properties. Results: The light curves of AT 2018hso show a first sharp peak (Mr = -13.93 mag), followed by a broader and shallower second peak, that resembles a plateau in the optical bands. The spectra dramatically change with time. Early time spectra show prominent Balmer emission lines and a weak Ca II] doublet, which is usually observed in ILRTs. However, the major decrease in the continuum temperature, the appearance of narrow metal absorption lines, the major change in the H$alpha$ strength and profile, and the emergence of molecular bands support a LRN classification. The possible detection of an I ~ -8 mag source at the position of AT 2018hso in HST archive images is consistent with expectations for a pre-merger massive binary, similar to the precursor of the 2015 LRN in M101. Conclusions: We provide reasonable arguments to support a LRN classification for AT~2018hso. This study reveals growing heterogeneity in the observables of LRNe than thought in the past, making sometimes tricky the discrimination between LRNe and ILRTs. This suggests the need of monitoring the entire evolution of gap transients to avoid misclassifications.
{We study biasing as a physical phenomenon by analysing geometrical and clustering properties of density fields of matter and galaxies.} {Our goal is to determine the bias function using a combination of geometrical and power spectrum analysis of sim ulated and real data.} {We apply an algorithm based on local densities of particles, $delta$, to form simulated biased models using particles with $delta ge delta_0$. We calculate the bias function of model samples as functions of the particle density limit $delta_0$. We compare the biased models with Sloan Digital Sky Survey (SDSS) luminosity limited samples of galaxies using the extended percolation method. We find density limits $delta_0$ of biased models, which correspond to luminosity limited SDSS samples.} {Power spectra of biased model samples allow to estimate the bias function $b(>L)$ of galaxies of luminosity $L$. We find the estimated bias parameter of $L_ast$ galaxies, $b_ast =1.85 pm 0.15$. } {The absence of galaxy formation in low-density regions of the Universe is the dominant factor of the biasing phenomenon. Second largest effect is the dependence of the bias function on the luminosity of galaxies. Variations in gravitational and physical processes during the formation and evolution of galaxies have the smallest influence to the bias function. }
64 - P. J. E. Peebles 2001
Advances in theoretical ideas on how galaxies formed have not been strongly influenced by the advances in observations of what might be in the voids between the concentrations of ordinary optically selected galaxies. The theory and observations are m aturing, and the search for a reconciliation offers a promising opportunity to improve our understanding of cosmic evolution. I comment on the development of this situation and present an update of a nearest neighbor measure of the void phenomenon that may be of use in evaluating theories of galaxy formation.
339 - Zheng Zheng 2009
We perform Halo Occupation Distribution (HOD) modeling to interpret small-scale and intermediate-scale clustering of 35,000 luminous early-type galaxies and their cross-correlation with a reference imaging sample of normal L* galaxies in the Sloan Di gital Sky Survey. The modeling results show that most of these luminous red galaxies (LRGs) are central galaxies residing in massive halos of typical mass M ~ a few times 10^13 to 10^14 Msun/h, while a few percent of them have to be satellites within halos in order to produce the strong auto-correlations exhibited on smaller scales. The mean luminosity Lc of central LRGs increases with the host halo mass, with a rough scaling relation of Lc propto M^0.5. The halo mass required to host on average one satellite LRG above a luminosity threshold is found to be about 10 times higher than that required to host a central LRG above the same threshold. We find that in massive halos the distribution of L* galaxies roughly follows that of the dark matter and their mean occupation number scales with halo mass as M^1.5. The HOD modeling results also allows for an intuitive understanding of the scale-dependent luminosity dependence of the cross-correlation between LRGs and L_* galaxies. Constraints on the LRG HOD provide tests to models of formation and evolution of massive galaxies, and they are also useful for cosmological parameter investigations. In one of the appendices, we provide LRG HOD parameters with dependence on cosmology inferred from modeling the two-point auto-correlation functions of LRGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا