ترغب بنشر مسار تعليمي؟ اضغط هنا

The Chandra View of the Supernova Remnant 0506-68.0 in the Large Magellanic Cloud

186   0   0.0 ( 0 )
 نشر من قبل Jack Hughes
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John P. Hughes




اسأل ChatGPT حول البحث

A new Chandra observation of SNR 0506-68.0 (also called N23) reveals a complex, highly structured morphology in the low energy X-ray band and an isolated compact central object in the high energy band. Spectral analysis indicates that the X-ray emission overall is dominated by thermal gas whose composition is consistent with swept-up ambient material. There is a strong gradient in ambient density across the diameter of the remnant. Toward the southeast, near a prominent star cluster, the emitting density is 10 - 23 cm^{-3} while toward the northwest it has dropped to a value of only 1 cm^{-3}. The total extent of the X-ray remnant is 100 by 120 (24 pc x 29 pc for a distance of 50 kpc), somewhat larger than previously known. The remnants age is estimated to be ~4600 yr. One part of the remnant shows evidence for enhanced O, Ne, and perhaps Mg abundances, which is interpreted as evidence for ejecta from a massive star core collapse supernova. The compact central object has a luminosity of a few times 10^{33} ergs/s and no obvious radio or optical counterpart. It does not show an extended nebula or pulsed emission as expected from a young energetic pulsar, but resembles the compact central objects seen in other core collapse SNe, such as Cas A.



قيم البحث

اقرأ أيضاً

We perform detailed spectroscopy of the X-ray brightest supernova remnant (SNR) in the Large Magellanic Cloud (LMC), N132D, using Chandra archival observations. By analyzing the spectra of the entire well-defined rim, we determine the mean abundances for O, Ne, Mg, Si, S and Fe for the local LMC environment. We find evidence of enhanced O on the north-western and S on the north-eastern blast wave. By analyzing spectra interior to the remnant, we confirm the presence of a Si-rich relatively hot plasma (> 1.5 kev) that is also responsible for the Fe K emission. Chandra images show that the Fe K emission is distributed throughout the interior of the southern half of the remnant but does not extend out to the blast wave. We estimate the progenitor mass to be $15pm5,M_{odot}$ using abundance ratios in different regions that collectively cover a large fraction of the remnant, as well as from the radius of the forward shock compared with models of an explosion in a cavity created by stellar winds. We fit ionizing and recombining plasma models to the Fe K emission and find that the current data cannot distinguish between the two, hence the origin of the high-temperature plasma remains uncertain. Our analysis is consistent with N132D being the result of a core-collapse supernova in a cavity created by its intermediate mass progenitor.
198 - Kentaro Someya 2013
This paper presents a detailed analysis of supernova remnant (SNR) N103B located in the Large Magellanic Cloud (LMC), based on Suzaku and Chandra observations. The spectrum of the entire SNR was reproduced using 3 ISM components with the kT of 0.32, 0.56, and 0.92keV and one ejecta component of 3.96keV, based on spectral analysis of the Suzaku/XIS data. The ejecta was overabundant in heavy elements, such as Mg, Si, S, Ca, Fe, and Ni. The unprecedentedly high quality of data obtained by XIS, allowed us to correctly distinguish between the emissions from the ISM and the ejecta for the first time. Combining XIS spectral analysis with Chandra/ACIS image analysis, we verified that the ejecta distributions for elements from Si to Fe-K were similar to one another, although Fe-K emission was located slightly inward compared with that of lighter elements such as Si, S, Ar, and Ca. The onion-like structure of the ejecta was maintained after the SN. In addition, the ISM emission represented by O and Fe-L was located inside the ejecta emission. We compared hydrogen-rich ejecta plasma, which is indicative of Type II SNRs, with plasma rich in heavy elements and poor in hydrogen, which is mainly observed in Type Ia. In the case of N103B, we could not determine whether the origin of the continuum emission in the 4.0-6.0keV band was from ejecta or high-temperature ISM only based on the spectral modeling of XIS data. High-energy continuum images in the 5.2-6.0keV band obtained by ACIS were extremely similar to those of ejecta, implying that the origin of the high-energy continuum might indeed be the ejecta. By combining spectral analysis with high-energy continuum images, we found some indications for H-dominated plasma, and as a result, that the progenitor of N103B might have been a Type II. The progenitor mass was estimated to be 13 Msun based on the abundance patterns of Mg, Fe, and Ni relative to Si.
The high sensitivity of the XMM-Newton instrumentation offers the opportunity to study faint and extended sources in the Milky Way and nearby galaxies such as the Large Magellanic Cloud (LMC) in detail. The ROSAT PSPC survey of the LMC has revealed m ore than 700 X-ray sources, among which there are 46 supernova remnants (SNRs) and candidates. We have observed the field around one of the most promising SNR candidates in the ROSAT PSPC catalogue, labelled [HP99] 456 with XMM-Newton, to determine its nature. We investigated the XMM-Newton data along with new radio-continuum, near infrared and optical data. In particular, spectral and morphological studies of the X-ray and radio data were performed. The X-ray images obtained in different energy bands reveal two different structures. Below 1.0 keV the X-ray emission shows the shell-like morphology of an SNR with a diameter of ~73 pc, one of the largest known in the LMC. For its thermal spectrum we estimate an electron temperature of (0.49 +/- 0.12)keV assuming non-equilibrium ionisation. The X-ray images above 1.0 keV reveal a less extended source within the SNR emission, located ~1 west of the centre of the SNR and coincident with bright point sources detected in radio-continuum. This hard component has an extent of 0.9 (i.e. ~13 pc at a distance of ~50 kpc) and a non-thermal spectrum. The hard source coincides in position with the ROSAT source [HP99] 456 and shows an indication for substructure. We firmly identify a new SNR in the LMC with a shell-like morphology and a thermal spectrum. Assuming the SNR to be in the Sedov phase yields an age of ~23 kyr. We explore possible associations of the hard non-thermal emitting component with a pulsar wind nebula (PWN) or background active galactic nuclei (AGN).
127 - William P. Blair 2000
We report a Far Ultraviolet Spectroscopic Explorer satellite observation of the supernova remnant N49 in the Large Magellanic Cloud, covering the 905 -- 1187 A spectral region. A 30 square aperture was used, resulting in a velocity resolution of ~100 km/s. The purpose of the observation was to examine several bright emission lines expected from earlier work and to demonstrate diffuse source sensitivity by searching for faint lines never seen previously in extragalactic supernova remnant UV spectra. Both goals were accomplished. Strong emission lines of O VI 1031.9 A, 1037.6 A and C III 977.0 A were seen, Doppler broadened to +/- 225 km/s and with centroids red-shifted to 350 km/s, consistent with the LMC. Superimposed on the emission lines are absorptions by C III and O VI 1031.9 at +260 km/s, which are attributed to warm and hot gas (respectively) in the LMC. The O VI 1037.6 A line is more severely affected by overlying interstellar and H2 absorption from both the LMC and our galaxy. N III 989.8 A is not seen, but models indicate overlying absorption severely attenuates this line. A number of faint lines from hot gas have also been detected, many of which have never been seen in an extragalactic supernova remnant spectrum.
We report the ATCA and ROSAT detection of Supernova Remnant (SNR) J0529--6653 in the Large Magellanic Cloud (LMC) which is positioned in the projected vicinity of the known radio pulsar PSR B0529-66. In the radio-continuum frequencies, this LMC objec t follows a typical SNR structure of a shell morphology with brightened regions in the south-west. It exhibits an almost circular shape of D=33 x 31 pc (1 pc uncertainty in each direction) and radio spectral index of alpha=-0.68$+-$0.03 - typical for mid-age SNRs. We also report detection of polarised regions with a peak value of 17+-7% at 6 cm. An investigation of ROSAT images produced from merged PSPC data reveals the presence of extended X-ray emission coincident with the radio emission of the SNR. In X-rays, the brightest part is in the north-east. We discuss various scenarios in regards to the SNR-PSR association with emphasis on the large age difference, lack of a pulsar trail and no prominent point-like radio or X-ray source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا