ترغب بنشر مسار تعليمي؟ اضغط هنا

A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars

73   0   0.0 ( 0 )
 نشر من قبل Tristan Guillot
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nine extrasolar planets with masses between 110 and 430M are known to transit their star. The knowledge of their masses and radii allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately. Aims: We seek to better understand the composition of transiting extrasolar planets by considering them as an ensemble, and by comparing the obtained planetary properties to that of the parent stars. Methods: We use evolution models and constraints on the stellar ages to derive the mass of heavy elements present in the planets. Possible additional energy sources like tidal dissipation due to an inclined orbit or to downward kinetic energy transport are considered. Results: We show that the nine transiting planets discovered so far belong to a quite homogeneous ensemble that is characterized by a mass of heavy elements that is a relatively steep function of the stellar metallicity, from less than 20 earth masses of heavy elements around solar composition stars, to up to 100M for three times the solar metallicity (the precise values being model-dependant). The correlation is still to be ascertained however. Statistical tests imply a worst-case 1/3 probability of a false positive. Conclusions: Together with the observed lack of giant planets in close orbits around metal-poor stars, these results appear to imply that heavy elements play a key role in the formation of close-in giant planets. The large masses of heavy elements inferred for planets orbiting metal rich stars was not anticipated by planet formation models and shows the need for alternative theories including migration and subsequent collection of planetesimals.

قيم البحث

اقرأ أيضاً

Identification of the main planet formation site is fundamental to understanding how planets form and migrate to the current locations. We consider the heavy-element content trend of observed exoplanets derived from improved measurements of mass and radius, and explore how this trend can be used as a tracer of their formation sites. Using gas accretion recipes obtained from detailed hydrodynamical simulations, we confirm that the disk-limited gas accretion regime is most important for reproducing the heavy-element content trend. Given that such a regime is specified by two characteristic masses of planets, we compute these masses as a function of the distance ($r$) from the central star, and then examine how the regime appears in the mass-semimajor axis diagram. Our results show that a plausible solid accretion region emerges at $r simeq 0.6$ au and expands with increasing $r$, using the conventional disk model. Given that exoplanets that possess the heavy-element content trend distribute currently near their central stars, our results imply the importance of planetary migration that would occur after solid accretion onto planets might be nearly completed at $r geq 0.6$ au. Self-consistent simulations would be needed to verify the predictions herein.
91 - G. Gonzalez , C. Laws 1999
The results of a new spectroscopic analysis of HD75289, recently reported to harbor a Jovian-mass planet, are presented. From high-resolution, high-S/N ratio spectra, we derive [Fe/H] = +0.28 +/- 0.05 for this star, in agreement with the spectroscopi c study of Gratton et al., published 10 years ago. In addition, we present a re-analysis of the spectra of Upsilon And and Tau Boo; our new parameters for these two stars are now in better agreement with photometrically-derived values and with the recent spectroscopic analyses of Fuhrmann, et al. We also report on extended abundance analyses of 14 Her, HD187123, HD210277, and Rho Cnc. If we include the recent spectroscopic analyses of HD217107 by Randich et al. and Sadakane et al., who both reported [Fe/H] ~ +0.30 for this star, we can state that all the hot-Jupiter systems studied to date have metal-rich parent stars. We find that the mean [C/Fe] and [Na/Fe] values among the stars-with-planets sample are smaller than the corresponding quantities among field stars of the same [Fe/H].
We analyzed the behavior of the rotational velocity in the parent stars of extrasolar planets. Projected rotational velocity v sin i and angular momentum were combined with stellar and planetary parameters, for a unique sample of 147 stars, amounting to 184 extrasolar planets, including 25 multiple systems. Indeed, for the present working sample we considered only stars with planets detected by the radial-velocity procedure. Our analysis shows that the v sin i distribution of stars with planets along the HR Diagram follows the well established scenario for the rotation of intermediate to low main sequence stars, with a sudden decline in rotation near 1.2 Msun. The decline occurs around Teff ~ 6000 K, corresponding to the late-F spectral region. A statistical comparison of the distribution of the rotation of stars with planets and a sample of stars without planets indicates that the v sin i distribution for these two families of stars is drawn from the same population distribution function. We also found that the angular momentum of extrasolar planet parent stars follows, at least qualitatively, Krafts relation J alpha (M/Msun)^{alpha}. The stars without detected planets show a clear trend of angular momentum deficit compared to the stars with planets, in particular for masses higher than about 1.25 Msun. Stars with the largest mass planets tend to have angular momentum comparable to or higher than the Sun.
158 - Kaspar von Braun 2017
In order to understand the exoplanet, you need to understand its parent star. Astrophysical parameters of extrasolar planets are directly and indirectly dependent on the properties of their respective host stars. These host stars are very frequently the only visible component in the systems. This book describes our work in the field of characterization of exoplanet host stars using interferometry to determine angular diameters, trigonometric parallax to determine physical radii, and SED fitting to determine effective temperatures and luminosities. The interferometry data are based on our decade-long survey using the CHARA Array. We describe our methods and give an update on the status of the field, including a table with the astrophysical properties of all stars with high-precision interferometric diameters out to 150 pc (status Nov 2016). In addition, we elaborate in more detail on a number of particularly significant or important exoplanet systems, particularly with respect to (1) insights gained from transiting exoplanets, (2) the determination of system habitable zones, and (3) the discrepancy between directly determined and model-based stellar radii. Finally, we discuss current and future work including the calibration of semi-empirical methods based on interferometric data.
We point out an intriguing relation between the masses of the transiting planets and their orbital periods. For the six currently known transiting planets, the data are consistent with a decreasing linear relation. The other known short-period planet s, discovered through radial-velocity techniques, seem to agree with this relation. We briefly speculate about a tentative physical model to explain such a dependence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا