ترغب بنشر مسار تعليمي؟ اضغط هنا

NGC922 - A new drop-through ring galaxy

42   0   0.0 ( 0 )
 نشر من قبل Oiwei Ivy Wong
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have found the peculiar galaxy NGC922 to be a new drop-through ring galaxy using multi-wavelength (UV-radio) imaging and spectroscopic observations. Its `C-shaped morphology and tidal plume indicate a recent strong interaction with its companion which was identified with these observations. Using numerical simulations we demonstrate that the main properties of the system can be generated by a high-speed off-axis drop-through collision of a small galaxy with a larger disk system, thus making NGC922 one of the nearest known collisional ring galaxies. While these systems are rare in the local Universe, recent deep HST images suggest they were more common in the early Universe.

قيم البحث

اقرأ أيضاً

We model the formation of Aurigas Wheel - a recently discovered collisional ring galaxy. Aurigas Wheel has a number of interesting features including a bridge of stars linking the neighbouring elliptical to the ring galaxy, and evidence for component s of expansion and rotation within the ring. Using N-body/SPH modelling, we study collisions between an elliptical galaxy and a late-type disk galaxy. A near direct collision, with a mildy inclined disk, is found to reasonably reproduce the general system morphology ~50 Myr following the collision. The collision must have a relatively low velocity (initially ~150 km s^{-1}) in order to form the observed bridge, and simultaneously match the galaxies separation. Our best-match model suggests the total disk galaxy is ~5 times more massive than the elliptical. We find that the velocity of expansion of the ring is sensitive to the mass of the elliptical, while insensitive to the encounter velocity. We evolve our simulation beyond the current epoch to study the future destiny of the galaxy pair. In our model, the nucleus moves further away from the plane of the ring in the direction of the stellar bridge. The nucleus eventually merges with the elliptical galaxy ~100 Myr after the present time. The ring continues to expand for ~200 Myr before collapsing back. The low initial relative velocity of the two galaxies will eventually result in a complete merger.
For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops which are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and pool, controls the crater deformations and pinch-off. However, it is not the strongest vortex rings which are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices which can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts, are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.
This research introduces a new drop fluidics, which uses a deformable and stretchable elastomeric film as the platform, instead of the commonly used rigid supports. Such a soft film impregnated with magnetic particles can be modulated with an externa l electromagnetic field that produces a vast array of topographical landscapes with varying surface curvature, which, in conjunction with capillarity, can direct and control motion of water droplets efficiently and accurately. When a thin layer of oil is present on this film that is deformed locally, a centrosymmetric wedge is formed. A water droplet placed on this oil laden film becomes asymmetrically deformed thus producing a gradient of Laplace pressure within the droplet setting it to motion. A simple theory is presented that accounts for the droplet speed in terms of such geometric variables as the volume of the droplet and the thickness of the oil film covering the soft elastomeric film, as well as such material variables as the viscosity of the oil and interfacial tension of the oil-water interfaces. Following the verification of the theoretical result using well-controlled model systems, we demonstrate how the electromagnetically controlled elasto-capillary force can be used to manipulate the motion of single and/or multiple droplets on the surface of the elastomeric film and how such elementary operations as drop fusion and thermally addressed chemical transformation can be carried out in aqueous droplets. It is expected that the resulting drop fluidics would be suitable for digital control of drop motion by simply switching on and off the electromagnetic fields applied at different positions underneath the elastomeric film. We anticipate that this method of directing and manipulating water droplets is poised for its applications in various biochemical reaction engineering, an example of which is Polymerase Chain Reaction (PCR).
This paper represents a theoretical and an experimental study of the spreading dynamics of a liquid droplet, generated by a needle free deposition system called the liquid needle droplet deposition technique. This technique utilizes a continuous liqu id jet generated from a pressurized dosing system which generates a liquid drop on a substrate to be characterized by optical contact angle measurements. Although many studies have explored the theoretical modelling of the droplet spreading scenario, a theoretical model representing the spreading dynamics of a droplet, generated by the jet impact and continuous addition of liquid mass, is yet to be addressed. In this study, we developed a theoretical model based on the overall energy balance approach which enables us to study on the physics of variation of droplet spreading under surrounding medium of various viscosities. The numerical solution of the non-linear ordinary differential equation has provided us the opportunity to comment on the variation of droplet spreading, as a function of Weber number ($We$), Reynolds number ($Re$) and Bond number ($Bo$) ranging from 0.5-3, 75-150, and 0.001-0.3, respectively. We have also presented a liquid jet impact model in order to predict the initial droplet diameter as an initial condition for the proposed governing equation. The model has been verified further with the experimental measurements and reasonable agreement has been observed. Experimental observations and theoretical investigations also highlight the precision, repeatability and wide range of the applicability of liquid needle drop deposition technique.
Einstein equivalence principle (EEP), as one of the foundations of general relativity, is a fundamental test of gravity theories. In this paper, we propose a new method to test the EEP of electromagnetic interactions through observations of black hol e photon rings, which naturally extends the scale of Newtonian and post-Newtoian gravity where the EEP violation through a variable fine structure constant has been well constrained to that of stronger gravity. We start from a general form of Lagrangian that violates EEP, where a specific EEP violation model could be regarded as one of the cases of this Lagrangian. Within the geometrical optical approximation, we find that the dispersion relation of photons is modified: for photons moving in circular orbit, the dispersion relation simplifies, and behaves such that photons with different linear polarizations perceive different gravitational potentials. This makes the size of black hole photon ring depend on polarization. Further assuming that the EEP violation is small, we derive an approximate analytic expression for spherical black holes showing that the change in size of the photon ring is proportional to the violation parameters. We also discuss several cases of this analytic expression for specific models. Finally, we explore the effects of black hole rotation and derive a modified proportionality relation between the change in size of photon ring and the violation parameters. The numerical and analytic results show that the influence of black hole rotation on the constraints of EEP violation is relatively weak for small magnitude of EEP violation and small rotation speed of black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا