ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the Counter-Rotating Gas in NGC 1596

373   0   0.0 ( 0 )
 نشر من قبل Aeree Chung
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aeree Chung




اسأل ChatGPT حول البحث

We present Australia Telescope Compact Array (ATCA) HI imaging of the edge-on galaxy NGC 1596, which was recently found to have counter-rotating ionized gas in its center (<15). We find a large HI envelope associated with a nearby companion, the dwarf irregular galaxy NGC 1602. The HI covers a region ~11.9x13.4 (62x70 kpc^2) and the total HI mass detected is 2.5+/-0.1x10^9 Msun (assuming an 18 Mpc distance). The HI is centered on NGC 1602 but appears to have two tidal tails, one of which crosses over NGC 1596. The HI located at the position of NGC 1596 has a velocity gradient in the same sense as the ionized gas, i.e. opposite to the stellar rotation. Both the existence of a large gas reservoir and the velocity gradient of the HI and the ionized gas strongly suggest that the ionized gas in NGC 1596 originated from NGC 1602. From the length of the HI tails we conclude that the interaction started at least 1 Gyr ago, but the unsettled, asymmetric distribution of the ionized gas suggests that the accretion occured more recently. NGC 1596 thus provides a good example where the presence of counter-rotating gas can be directly linked to an accretion event. After the accretion has stopped or the merging is complete, NGC 1596 may evolve to a system with more extended counter-rotating gas but no obvious signature of interaction. There is a substantial local HI peak in one of the two tails, where we also find a faint stellar counterpart. The M_HI/L_B ratio in this region is too high for a normal dwarf elliptical or a low surface brightness galaxy, so we conclude that a tidal dwarf is currently forming there.



قيم البحث

اقرأ أيضاً

We present results from MUSE observations of the nearly face-on disk galaxy NGC 7742. This galaxy hosts a spectacular nuclear ring of enhanced star formation, which is unusual in that it is hosted by a non-barred galaxy, and also because this star fo rmation is most likely fuelled by externally accreted gas that counter-rotates with respect to its main stellar body. We use the MUSE data to derive the star-formation history (SFH) and accurately measure the stellar and ionized-gas kinematics of NGC7742 in its nuclear, bulge, ring, and disk regions. We map the previously known gas counter-rotation well outside the ring region and deduce the presence of a slightly warped inner disk, which is inclined ~6 degrees compared to the outer disk. The gas-disk inclination is well constrained from the kinematics; the derived inclination 13.7 $pm$ 0.4 degrees agrees well with that derived from photometry and from what one expects using the inverse Tully-Fisher relation. We find a prolonged SFH in the ring with stellar populations as old as 2-3 Gyr and an indication that the star formation triggered by the minor merger event was delayed in the disk compared to the ring. There are two separate stellar components: an old population that counter-rotates with the gas, and a young one, concentrated to the ring, that co-rotates with the gas. We recover the kinematics of the old stars from a two-component fit, and show that combining the old and young stellar populations results in the erroneous average velocity of nearly zero found from a one-component fit. The superior spatial resolution and large field of view of MUSE allow us to establish the kinematics and SFH of the nuclear ring in NGC 7742. We show further evidence that this ring has its origin in a minor merger event, possibly 2-3 Gyr ago.
55 - M. Bureau , A. Chung 2005
We have identified two new galaxies with gas counter-rotation (NGC1596 and NGC3203) and have confirmed similar behaviour in another one (NGC128), this using results from separate studies of the ionized-gas and stellar kinematics of a well-defined sam ple of 30 edge-on disc galaxies. Gas counter-rotators thus represent 10+/-5% of our sample, but the fraction climbs to 21+/-11% when only lenticular (S0) galaxies are considered and to 27+/-13% for S0s with detected ionized-gas only. Those fractions are consistent with but slightly higher than previous studies. A compilation from well-defined studies of S0s in the literature yields fractions of 15+/-4% and 23+/-5%, respectively. Although mainly based on circumstantial evidence, we argue that the counter-rotating gas originates primarily from minor mergers and tidally-induced transfer of material from nearby objects. Assuming isotropic accretion, twice those fractions of objects must have undergone similar processes, underlining the importance of (minor) accretion for galaxy evolution. Applications of gas counter-rotators to barred galaxy dynamics are also discussed.
In order to try and understand its origins, we present high-quality long-slit spectral observations of the counter-rotating stellar discs in the strange S0 galaxy NGC 4550. We kinematically decompose the spectra into two counter-rotating stellar comp onents (plus a gaseous component), in order to study both their kinematics and their populations. The derived kinematics largely confirm what was known previously about the stellar discs, but trace them to larger radii with smaller errors; the fitted gaseous component allows us to trace the hydrogen emission lines for the first time, which are found to follow the same rather strange kinematics previously seen in the [OIII] line. Analysis of the populations of the two separate stellar components shows that the secondary disc has a significantly younger mean age than the primary disc, consistent with later star formation from the associated gaseous material. In addition, the secondary disc is somewhat brighter, also consistent with such additional star formation. However, these measurements cannot be self-consistently modelled by a scenario in which extra stars have been added to initially-identical counter-rotating stellar discs, which rules out Evans & Colletts (1994) elegant separatrix-crossing model for the formation of such massive counter-rotating discs from a single galaxy, leaving some form of unusual gas accretion history as the most likely formation mechanism.
The massive early-type galaxy (ETG) IC 1459 is a slowly rotating galaxy that exhibits a rapidly counter-rotating kinematically decoupled core (KDC, $R_{rm KDC}approx 5^{primeprime}approx 0.1 R_{rm e}$). To investigate the origin of its KDC, we couple d large data mosaics from the near-infrared (NIR)/optical integral field unit (IFU) instruments K-band Multi-Object Spectrograph (KMOS) and Multi Unit Spectroscopic Explorer (MUSE). We studied IC 1459s stellar populations and, for the first time for a KDC, the spatially resolved initial mass function (IMF). We used full-spectral-fitting to fit the stellar populations and IMF simultaneously, and an alternative spectral-fitting method that does not assume a star-formation history (SFH; although does not constrain the IMF) for comparison. When no SFH is assumed, we derived a negative metallicity gradient for IC 1459 that could be driven by a distinct metal-poor population in the outer regions of the galaxy, and a radially constant old stellar age. We found a radially constant bottom-heavy IMF out to $sim frac{1}{3} R_{rm e}$. The radially flat IMF and age extend beyond the counter-rotating core. We detected high velocity dispersion along the galaxys major axis. Our results potentially add weight to findings from orbital modelling of other KDCs that the core is not a distinct population of stars but in fact two smooth co-spatial counter-rotating populations. No clear picture of formation explains the observational results of IC 1459, but we propose it could have included a gas-rich intense period of star formation at early times, perhaps with counter-rotating accreting cold streams, followed by dry and gas-rich mergers through to the present day.
We disentangle two counter-rotating stellar components in NGC 4191 and characterize their physical properties (kinematics, morphology, age, metallicity, and abundance ratio). We performed a spectroscopic decomposition on integral field data to separa te the contribution of two stellar components to the observed galaxy spectrum across the field of view. We also performed a photometric decomposition, modelling the galaxy with a Sersic bulge and two exponential disks of different scale length, with the aim of associating these structural components with the kinematic components. We measured the equivalent width of the absorption line indices on the best fit that represent the kinematic components and compared our measurements to the predictions of stellar population models. We have evidence that the line-of-sight velocity distributions (LOSVDs) are consistent with the presence of two distinct kinematic components. The combined information of the intensity of the LOSVDs and photometry allows us to associate the Sersic bulge and the outer disk with the main kinematic component, and the inner disk with the secondary kinematic component. The two kinematic stellar components counter-rotate with respect to each other. The main component is the most luminous and massive, and it rotates slower than the secondary component, which rotates along the same direction as the ionized gas. We also found that the two kinematic components have the same solar metallicity and sub-solar abundance ratio, without the presence of significant radial gradients. On the other hand, their ages show strong negative gradients and the possible indication that the secondary component is the youngest. We interpret our results in light of recent cosmological simulations and suggest gas accretion along two filaments as the formation mechanism of the stellar counter-rotating components in NGC 4191 (Abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا