ترغب بنشر مسار تعليمي؟ اضغط هنا

The Starburst-Interstellar Medium Interaction in NGC 1569 II. Small-Scale Examination of Nebular Emission, H II Region Size Distribution, and H II Region Luminosity Function

92   0   0.0 ( 0 )
 نشر من قبل Brent Buckalew
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brent A. Buckalew




اسأل ChatGPT حول البحث

(abridged) NGC 1569 is an ideal test environment to understand the impact of feedback from massive stars on the surrounding ISM. We present HST WFPC2 narrowband imagery of NGC 1569 in an attempt to understand the underlying ionizing emission mechanisms on a 3 pc scale and to generate a H II region size distribution and luminosity function. We use [O III]/Hbeta and [S II]/Halpha ratio maps to find that non-photoionizing mechanisms (e.g. shocks) are responsible for 10%+/-3% of the Halpha emission, 2.3-3.3 times larger than results from similar galaxies. Our results for NGC 1569 indicate that these non-photoionized areas do not lie in low surface brightness regions exclusively. To explain this large percentage of non-photoionized emission, we suggest that NGC 1569 is, indeed, in a post-starburst phase as previous authors have claimed. We also derived slopes for the H II region luminosity function (-1.00+/-0.08) and size distribution (-3.02+/-0.27). The luminosity slope, though shallow, is similar to previous work on this galaxy and other irregular galaxies. The size distribution slope is shallower than previous slopes found for irregular galaxies, but our slope value fits into their confidence intervals and vice versa.


قيم البحث

اقرأ أيضاً

Using the short-high module of the Infrared Spectrograph on the Spitzer Space Telescope, we have measured the [S IV] 10.51, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71-micron emission lines in nine H II regions in the dwarf irregular galaxy NGC 6822. These lines arise from the dominant ionization states of the elements neon (Ne$^{++}$, Ne$^+$) and sulphur (S$^{3+}$, S$^{++}$), thereby allowing an analysis of the neon to sulphur abundance ratio as well as the ionic abundance ratios Ne$^+$/Ne$^{++}$ and S$^{3+}$/S$^{++}$. By extending our studies of H II regions in M83 and M33 to the lower metallicity NGC 6822, we increase the reliability of the estimated Ne/S ratio. We find that the Ne/S ratio appears to be fairly universal, with not much variation about the ratio found for NGC 6822: the median (average) Ne/S ratio equals 11.6 (12.2$pm$0.8). This value is in contrast to Asplund et al.s currently best estimated value for the Sun: Ne/S = 6.5. In addition, we continue to test the predicted ionizing spectral energy distributions (SEDs) from various stellar atmosphere models by comparing model nebulae computed with these SEDs as inputs to our observational data, changing just the stellar atmosphere model abundances. Here we employ a new grid of SEDs computed with different metallicities: Solar, 0.4 Solar, and 0.1 Solar. As expected, these changes to the SED show similar trends to those seen upon changing just the nebular gas metallicities in our plasma simulations: lower metallicity results in higher ionization. This trend agrees with the observations.
We present a comprehensive study to determine if the LINER/H II region transition spectrum in NGC 4569 can be generated solely by photoionization by the nuclear starburst. A review of the multiwavelength data from the literature reveals no additional sources that contribute to the ionization. We find that the young starburst dominating the UV emission is distinct from the nuclear population of A supergiants identified in the optical spectrum by Keel (1996). Spectral synthesis analysis provides constraints on the physical nature of the starburst, revealing a 5-6 Myr, approximately instantaneous starburst with subsolar metallicity. These results are used to model the spectral energy distribution of the ionizing continuum. Luminosity constraints place limits on the steepness of the extinction curve for the young starburst. The Savage & Mathis (1979) curve satisfies all luminosity constraints and the derived reddening is similar to the emission line reddening. These results imply extreme conditions in the nuclear starburst, with ~5x10^4 O and B stars compacted in the inner 9 x 13 region of the nucleus. Using photoionization analysis and employing all observational constraints on the emission line gas, we find very specific conditions are required if the spectrum is generated solely by stellar photoionization. At least two spatially distinct components are required - a compact region with strong O III emission and an extended, low density component emitting most of the S II flux. A high density component is also needed to generate the O I flux. Additionally, a limited contribution from Wolf-Rayet stars to the ionizing SED is necessary, consistent with the results of Barth & Shields (2000). We present a physical interpretation for the multi-component emission line gas.
Formation mechanism of a supergiant H II region NGC 604 is discussed in terms of collision of H I clouds in M33. An analysis of the archival H I data obtained with the Very Large Array (VLA) reveals complex velocity distributions around NGC 604. The H I clouds are composed of two velocity components separated by ~ 20 km s^-1 for an extent of ~ 700 pc, beyond the size of the the H II region. Although the H I clouds are not easily separated in velocity with some mixed component represented by merged line profiles, the atomic gas mass amounts to 6 x 10^6 M_Sol and 9 x 10^6 M_Sol for each component. These characteristics of H I gas and the distributions of dense molecular gas in the overlapping regions of the two velocity components suggest that the formation of giant molecular clouds and the following massive cluster formation have been induced by the collision of H I clouds with different velocities. Referring to the existence of gas bridging feature connecting M33 with M31 reported by large-scale HI surveys, the disturbed atomic gas possibly represent the result of past tidal interaction between the two galaxies, which is analogous to the formation of the R136 cluster in the LMC.
We have developed a full numerical method to study the gas dynamics of cometary ultra-compact (UC) H II regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a $40.9/21.9 M_odot$ star are simulated. In the bow-shock models, the massive star is assumed to move through dense ($n=8000~cm^{-3}$) molecular material with a stellar velocity of $15~km~s^{-1}$. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne II] 12.81mum and $H_2~S(2)$ lines from the ionized regions and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell is mainly due to the expansion of the H II region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion. The kinematics of the molecular gas inside the dense shell simply reflects the motion of the dense shell with respect to the star. These differences can be used to distinguish two sets of models.
Using our deep optical and near-infrared photometry along with multiwavelength archival data, we here present a detailed study of the Galactic H II region Sh 2-305, to understand the star/star-cluster formation. On the basis of excess infra-red emiss ion, we have identified 116 young stellar objects (YSOs) within a field of view of ~ 18.5 arcminute x 18.5 arcminute, around Sh 2-305. The average age, mass and extinction (A_V) for this sample of YSOs are 1.8 Myr, 2.9 solar mass and 7.1 mag, respectively. The density distribution of stellar sources along with minimal spanning tree calculations on the location of YSOs reveals at least three stellar sub-clusterings in Sh 2-305. One cluster is seen toward the center (i.e., Mayer 3), while the other two are distributed toward the north and south directions. Two massive O-type stars (VM2 and VM4; ages ~ 5 Myr) are located at the center of the Sh 2-305 H II region. The analysis of the infrared and radio maps traces the photon dominant regions (PDRs) in the Sh 2-305. Association of younger generation of stars with the PDRs is also investigated in the Sh 2-305. This result suggests that these two massive stars might have influenced the star formation history in the Sh 2-305. This argument is also supported with the calculation of various pressures driven by massive stars, slope of mass function/K-band luminosity function, star formation efficiency, fraction of Class I sources, and mass of the dense gas toward the sub-clusterings in the Sh 2-305.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا