ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hubble Deep Field North SCUBA Super-map IV - Characterizing submillimetre galaxies using deep Spitzer imaging

65   0   0.0 ( 0 )
 نشر من قبل Alexandra Pope
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alexandra Pope




اسأل ChatGPT حول البحث

We present SEDs, Spitzer colours, and IR luminosities for 850 micron selected galaxies in the GOODS-N field. Using the deep Spitzer Legacy images and new data and reductions of the VLA-HDF radio data, we find statistically secure counterparts for 60 per cent (21/35) of our submm sample, and identify tentative counterparts for another 12 objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer. We find that in most cases the 850 micron emission is dominated by a single 24 micron source. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ULIRGs of the same luminosity and therefore appear to be cooler. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. Using 24 micron. 850 micron and 1.4 GHz observations, we fit templates that span the mid-IR through radio to derived the integrated IR luminosity of the submm galaxies. By themselves, 24 micron and radio fluxes are able to predict LIR reasonably well because they are relatively insensitive to temperature. However, the submm flux by itself consistently overpredicts LIR when using spectral templates which obey the local ULIRG temperature-luminosity relation. The shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, and we find that the Spitzer photometry alone provides a model independent estimate of the redshift. Using X-ray and mid-IR data, only 5 per cent of our secure counterparts show strong evidence for an active galactic nucleus dominating the IR luminosity.

قيم البحث

اقرأ أيضاً

231 - H. I. Teplitz 2005
We present a pilot study of 16 micron imaging within the GOODS northern field. Observations were obtained using the PeakUp imaging capability of the Spitzer IRS. We survey 35 square arcminutes to an average 3 sigma depth of 0.075 mJy and detect 149 s ources. The survey partially overlaps the area imaged at 15 microns by ISO, and we demonstrate that our photometry and galaxy-number counts are consistent with their measurements. We infer the total infrared luminosity of 16 micron detections using a comparison to local templates and find a wide range of L_IR} from ~10^9 to 10^{12} L_sun. Approximately one fifth of the detected sources have counterparts in the Chandra 2 Msec catalog, and we show that the hard band (2-8 keV) detected sources are likely to have strong AGN contributions to the X-ray flux. The ultradeep sensitivity of Chandra implies some X-ray detections may be purely starbursting objects. We examine the 16 to 24 micron flux ratio and conclude that it shows evidence for the detection of redshifted PAH emission at z~0.5 and z>0.8.
56 - C. Borys 2003
We investigate the emission of sub-millimetre-wave radiation from galaxies in a 165 square arcminute region surrounding the Hubble Deep Field North. The data were obtained from dedicated observing runs from our group and others using the SCUBA camera on the James Clerk Maxwell Telescope, and combined using techniques specifically developed for low signal-to-noise source recovery. The resulting `Super-map is derived from about 60 shifts of JCMT time, taken in a variety of observing modes and chopping strategies, and combined here for the first time. At 850 micron we detect 19 sources at >4 sigma, including 5 not previously reported. We also list an additional 15 sources between 3.5 and 4.0 sigma (where 2 are expected by chance). The 450 micron map contains 5 sources at >4 sigma. We present a new estimate of the 850 micron and 450 micron source counts. The number of sub-mm galaxies we detect account for approximately 40% of the 850 micron sub-mm background, and we show that mild extrapolations can reproduce it entirely. A clustering analysis fails to detect any significant signal in this sample of SCUBA detected objects. A companion paper describes the multiwavelength properties of the sources.
We present the 2.12~$mu$m narrow-band image of the Hubble Deep Field North taken with the near-infrared camera (CISCO) on the Subaru telescope. Among five targets whose H$alpha$ or [O~{sc iii}] emission lines are redshifted into our narrow-band range expected from their spectroscopic redshift, four of them have strong emission lines, especially for the two [O~{sc iii}] emission-line objects. The remaining one target shows no H$alpha$ emission in spite of its bright rest-UV luminosity, indicating that this object is already under the post-starburst phase. The volume-averaged $SFR$ derived from the detected two H$alpha$ emission is roughly consistent with that evaluated from the rest-UV continuum.
89 - C. Borys 2004
We present radio, optical and X-ray detected counterparts to the sub-mm sources found using SCUBA in the Hubble Deep Field North region (GOODS-N). A new counterpart identification statistic is developed to identify properties of galaxies detected at other wavelengths that can be used to aid counterpart identification. We discriminate between criteria that can be used to pre-select sub-mm bright objects, and those that identify the counterpart to a known sub-mm object. Optically faint galaxies detected in the deepest 1.4 GHz radio continuum maps are the only effective way of pre-selecting SCUBA galaxies, and radio sources are the best way to identify counterparts to known sub-mm detections. Looking at radio spectral indices, only the steeper sources (indicative of star formation) are detected in the sub-mm. Although we find several X-ray identifications, we show that deep Chandra images do not contribute to counterpart identifications, since in all cases they are already detected in the more easily obtained VLA radio maps. We also find find no evidence for clustering between Chandra and SCUBA sources in this field. For a known SCUBA position, the reddest source tends to be the correct association, although we can find no cut on colour, magnitude, or clustering property that efficiently pre-selects for SCUBA sources. 15 micron ISO sources are statistically detected by SCUBA, but the limiting mid-IR flux is not low enough to provide useful constraints. We present postage stamp strips for each SCUBA detection in separate bands from X-ray to radio, providing direct visual evidence that approximately half of the sub-mm sources in this field remain unidentified, despite an abundance of deep multi-wavelength data.
We present results from a 479.7 ks Chandra exposure of the Hubble Deep Field North (HDF-N) and its immediate vicinity. In our X-ray image, the deepest ever reported with a 0.5-2.0 keV flux limit of about 4.9 x 10^{-17} erg/cm^2/s, we detect four new HDF-N X-ray sources bringing the total number of such sources to 12. The new sources include two optically bright (R=18.3-18.8), low-redshift (z<0.15) galaxies, a Fanaroff-Riley I radio galaxy, and an edge-on spiral hosting either a powerful starburst or a low-luminosity active galactic nucleus (AGN). Notably, we have now detected X-ray emission from all luminous galaxies (M_V<-18) with z<0.15 known in the HDF-N. We have also detected the remarkable microJy radio source VLA J123642.09+621331.4, which is located just outside the HDF-N and has a likely redshift of z=4.424. We have detected X-ray variability from two of the previously known HDF-N X-ray sources, and spectral fitting shows clear evidence for X-ray absorption in the brightest X-ray source in the HDF-N, a z=0.960 broad-line AGN with associated Mg II absorption. Stacking analyses of optically bright HDF-N galaxies not individually detected in X-rays have provided estimates of their average X-ray fluxes, and we find that the X-ray luminosities of `normal spirals at z~0.5 are not more than a factor of ~2 larger (per unit B-band luminosity) than those of spirals in the local Universe (z<0.01). This constrains models for the evolution of low-mass X-ray binary populations in galaxies in response to the declining cosmic star-formation rate. Monte-Carlo simulations support the validity of the stacking analyses and show that the Chandra Advanced CCD Imaging Spectrometer (ACIS) performs source detection well even with effective exposure times of ~8 Ms. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا