ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Star Formation in the Spiral Galaxy NGC 628

227   0   0.0 ( 0 )
 نشر من قبل Bruce Elmegreen
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The distributions of size and luminosity for star-forming regions in the nearby spiral galaxy NGC 628 are studied over a wide range of scales using progressively blurr



قيم البحث

اقرأ أيضاً

154 - Alexander S. Gusev 2014
Hierarchical structures and size distribution of star formation regions in the nearby spiral galaxy NGC 628 are studied over a range of scale from 50 to 1000 pc using optical images obtained with 1.5 m telescope of the Maidanak Observatory. We found hierarchically structured concentrations of star formation regions in the galaxy, smaller regions with a higher surface brightness are located inside larger complexes having a lower surface brightness. We illustrate this hierarchy by dendrogram, or structure tree of the detected star formation regions, which demonstrates that most of these regions are combined into larger structures over several levels. We found three characteristic sizes of young star groups: 65 pc (OB associations), 240 pc (stellar aggregates) and 600 pc (star complexes). The cumulative size distribution function of star formation regions is found to be a power law with a slope of approximately -1.5 on scales appropriate to diameters of associations, aggregates and complexes. This slope is close to the slope which was found earlier by B. Elmegreen et al. for star formation regions in the galaxy on scales from 2 to 100 pc.
We investigate photometric properties of spiral arms and stellar complexes/associations inside these arms in the grand design NGC 628 (M74) galaxy.We analyze GALEX ultraviolet, optical UBVRI, and H-alpha? surface photometry data, including those obta ined with 1.5 m telescope at the Maidanak Observatory. In the longer arm, the large and bright stellar complexes are located at regular intervals along the arm, but only farther from the galaxy center. They are joined with the narrow lane of dust, visible only in the infrared bands. The usual dust lane along the stellar arm inner side is seen there only at distances closer to the galaxy center. It is well expressed in CO (H_2) image. We have found, that the second, short arm hosts two dust lanes, the strong and wide at the inner side, and narrow and irregular along its outer edge. This outer dust lane is well seen in IR images only. The shorter arm contains no star complexes at all. Gradients of age and luminosity of stars across both arms are missing (again excepting the parts of arms located closer to the center), which is confirmed by our photometric cuts across both arms. The drastic difference in the morphology of the two symmetric arms (grand design type) of a galaxy has now been confirmed by objective measurements in the case of M74. It is unclear why about two third of galaxies with beaded arms host these beads (star complexes) in one arm only.
93 - F. Sakhibov , A. S. Gusev , 2021
Star formation induced by a spiral shock wave, which in turn is generated by a spiral density wave, produces an azimuthal age gradient across the spiral arm, which has opposite signs on either side of the corotational resonance. An analysis of the sp atial separation between young star clusters and nearby HII regions made it possible to determine the position of the corotation radius in the studied galaxies. Fourier analysis of the gas velocity field in the same galaxies independently confirmed the corotation radius estimates obtained by the morphological method presented here.
Relations between star formation rates along the spiral arms and the velocities of gas inflow into the arms in grand-design galaxy NGC 628 were studied. We found that the radial distribution of average star formation rate in individual star formation regions in regular spiral arms correlates with the velocity of gas inflow into the spiral arms. Both distributions have maxima at a galactocentric distance of 4.5-5 kpc. There are no correlations between the radial distributions of average star formation rate in star formation regions in spiral arms and outside spiral arms in the main disc. We also did not find a correlation between the radial distribution of average star formation rate in star formation regions in spiral arms and HI column density.
We present new $^{12}$CO(J=1-0) observations of the barred galaxy NGC 4303 using the Nobeyama 45m telescope (NRO45) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The H$alpha$ images of barred spiral galaxies often show act ive star formation in spiral arms, but less so in bars. We quantify the difference by measuring star formation rate and efficiency at a scale where local star formation is spatially resolved. Our CO map covers the central 2$farcm$3 region of the galaxy; the combination of NRO45 and CARMA provides a high fidelity image, enabling accurate measurements of molecular gas surface density. We find that star formation rate and efficiency are twice as high in the spiral arms as in the bar. We discuss this difference in the context of the Kennicutt-Schimidt (KS) law, which indicates a constant star formation rate at a given gas surface density. The KS law breaks down at our native resolution ($sim$ 250 pc), and substantial smoothing (to 500 pc) is necessary to reproduce the KS law, although with greater scatter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا