ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmography with cluster strong lensing

45   0   0.0 ( 0 )
 نشر من قبل James B Gilmore
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By stacking an ensemble of strong lensing clusters, we demonstrate the feasibility of placing constraints on the dark energy equation of state. This is achieved by using multiple images of sources at two or more distinct redshift planes. The sample of smooth clusters in our simulations is based on observations of massive clusters and the distribution of background galaxies is constructed using the Hubble Deep Field. Our source distribution reproduces the observed redshift distribution of multiply imaged sources in Abell 1689. The cosmology recovery depends on the number of image families with known spectroscopic redshifts and the number of stacked clusters. Our simulations suggest that constraints comparable to those derived from other competing established techniques on a constant dark energy equation of state can be obtained using 10 to 40 clusters with 5 or more families of multiple images. We have also studied the observational errors in the image redshifts and positions. We find that spectroscopic redshifts and high resolution {it Hubble Space Telescope} images are required to eliminate confidence contour relaxation relative to the ideal case in our simulations. This suggests that the dark energy equation of state, and other cosmological parameters, can be constrained with existing {it Hubble Space Telescope} images of lensing clusters coupled with dedicated ground-based arc spectroscopy.

قيم البحث

اقرأ أيضاً

Using a new sub-sample of observed strong gravitational lens systems, for the first time, we present the equation for the angular diameter distance in the $y$-redshift scenario for cosmography and use it to test the cosmographic parameters. In additi on, we also use the observational Hubble data from cosmic chronometers and a Joint analysis of both data is performed. Among the most important conclusions are that this new analysis for cosmography using Strong Lensing Systems is equally competitive to constrain the cosmographic parameters as others presented in literature. Additionally, we present the reconstruction of the effective equation of state inferred from our samples, showing that at $z=0$ those reconstructions from Strong Lensing Systems and Joint analysis are in concordance with the standard model of cosmology.
We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 ($z=0.348$) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems . In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range $1.0-6.1$, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of $0.3$ in a fixed flat $Lambda$CDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at $68%$ confidence level) $Omega_m=0.25^{+0.13}_{-0.16}$ and $w=-1.07^{+0.16}_{-0.42}$ for a flat $Lambda$CDM model, and $Omega_m=0.31^{+0.12}_{-0.13}$ and $Omega_Lambda=0.38^{+0.38}_{-0.27}$ for a universe with $w=-1$ and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be $0.3pm 0.1$.(ABRIDGED)
We use supernovae measurements, calibrated by the local determination of the Hubble constant $H_0$ by SH0ES, to interpolate the distance-redshift relation using Gaussian process regression. We then predict, independent of the cosmological model, the distances that are measured with strong lensing time delays. We find excellent agreement between these predictions and the measurements. The agreement holds when we consider only the redshift dependence of the distance-redshift relation, independent of the value of $H_0$. Our results disfavor the possibility that lens mass modeling contributes a 10% bias or uncertainty in the strong lensing analysis, as suggested recently in the literature. In general our analysis strengthens the case that residual systematic errors in both measurements are below the level of the current discrepancy with the CMB determination of $H_0$, and supports the possibility of new physical phenomena on cosmological scales. With additional data our methodology can provide more stringent tests of unaccounted for systematics in the determinations of the distance-redshift relation in the late universe.
75 - M. Bradac 2004
Weak gravitational lensing is considered to be one of the most powerful tools to study the mass and the mass distribution of galaxy clusters. However, the mass-sheet degeneracy transformation has limited its success. We present a novel method for a c luster mass reconstruction which combines weak and strong lensing information on common scales and can, as a consequence, break the mass-sheet degeneracy. We extend the weak lensing formalism to the inner parts of the cluster and combine it with the constraints from multiple image systems. We demonstrate the feasibility of the method with simulations, finding an excellent agreement between the input and reconstructed mass also on scales within and beyond the Einstein radius. Using a single multiple image system and photometric redshift information of the background sources used for weak and strong lensing analysis, we find that we are effectively able to break the mass-sheet degeneracy, therefore removing one of the main limitations on cluster mass estimates. We conclude that with high resolution (e.g. HST) imaging data the method can more accurately reconstruct cluster masses and their profiles than currently existing lensing techniques.
114 - Yudai Suwa 2017
In the coming LSST era, we will observe $mathcal{O}(100)$ of lensed supernovae (SNe). In this paper, we investigate possibility for predicting time and sky position of a supernova using strong lensing. We find that it will be possible to predict the time and position of the fourth image of SNe which produce four images by strong lensing, with combined information from the three previous images. It is useful to perform multi-messenger observations of the very early phase of supernova explosions including the shock breakout.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا