ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultraluminous X-ray Sources, High Redshift QSOs and Active Galaxies

105   0   0.0 ( 0 )
 نشر من قبل Dr. Geoffrey Burbidge
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that all of the 32 point X-ray sources which lie within about 10 of the centre of nearby galaxies, and which have so far been optically identified are high redshift objects - AGN or QSOs. Thus the surface density of these QSOs p similar or equal to 0.1 per square arc minute. Some of them were originally discovered as X-ray sources and classified as ultraluminous X-ray sources (ULXs), nearly all of which lie near the centers of active galaxies. We demonstrate that this concentration around galactic nuclei is of high statistical significance: the probabiliy that p that they are accidental lies in the range one in a thousand to one in ten thousand, and apparently this excess cannot be accounted for by microlensing.



قيم البحث

اقرأ أيضاً

It is suggested that many of the ultraluminous compact x-ray sources now being found in the main bodies of galaxies, particularly those that are active, like M82, NGC 3628 and others, are local QSOs, or BL Lac objects, with high intrinsic redshifts i n the process of being ejected from those galaxies. Evidence in support of this hypothesis is summarized.
We review observations of ultraluminous X-ray sources (ULXs). X-ray spectroscopic and timing studies of ULXs suggest a new accretion state distinct from those seen in Galactic stellar-mass black hole binaries. The detection of coherent pulsations ind icates the presence of neutron-star accretors in three ULXs and therefore apparently super-Eddington luminosities. Optical and X-ray line profiles of ULXs and the properties of associated radio and optical nebulae suggest that ULXs produce powerful outflows, also indicative of super-Eddington accretion. We discuss models of super-Eddington accretion and their relation to the observed behaviors of ULXs. We review the evidence for intermediate mass black holes in ULXs. We consider the implications of ULXs for super-Eddington accretion in active galactic nuclei, heating of the early universe, and the origin of the black hole binary recently detected via gravitational waves.
113 - Andrew R. King 2003
Chandra observations of the Cartwheel galaxy reveal a population of ultraluminous X-ray sources (ULXs) with lifetimes < 10^7 yr associated with a spreading wave of star formation which began some 3 x 10^8 yr ago. A population of high-mass X-ray binar ies provides a simple model: donor stars of initial masses M_2 > 15 Msun transfer mass on their thermal timescales to black holes of masses M_1 > 10 Msun. For alternative explanations of the Cartwheel ULX population in terms of intermediate-mass black holes (IMBH) accreting from massive stars, the inferred production rate > 10^-6 yr^-1 implies at least 300 IMBHs, and more probably 3 x 10^4, within the star-forming ring. These estimates are increased by factors eta^-1 if the efficiency eta with which IMBHs find companions of > 15 Msun within 10^7 yr is <1. Current models of IMBH production would require a very large mass ($ga 10^{10}msun$) of stars to have formed new clusters. Further, the accretion efficiency must be low (< 6 x 10^-3) for IMBH binaries, suggesting super-Eddington accretion, even though intermediate black hole masses are invoked with the purpose of avoiding it. These arguments suggest either that to make a ULX, an IMBH must accrete from some as yet unknown non-stellar mass reservoir with very specific properties, or that most if not all ULXs in star-forming galaxies are high-mass X-ray binaries.
58 - T.P. Roberts 2002
The advanced capabilities of the Chandra and XMM-Newton observatories mean that, for the first time, the detailed study of the brightest point-like X-ray sources in nearby galaxies outside of the local group is a realistic aim. Here, we present the r esults of a Chandra ACIS-S study of two of the nearest and brightest sources in the rare ultraluminous (L(X) > 10^39 erg s^-1) X-ray source (ULX) class, NGC 5204 X-1 and NGC 4559 X-1. When considered with new optical integral field spectroscopy data this provides powerful diagnostics as to the nature of these sources, in particular suggesting that NGC 5204 X-1 is a high-mass X-ray binary, and showing new evidence linking it to the Galactic microquasar phenomenon. We also find that both ULX appear to be located in cavities in emission-line gas nebulae that surround the sources. In addition, we present the results of a Chandra observation of the interacting galaxies NGC 4485/NGC 4490, a pair of late-type spiral galaxies that, remarkably, contain a total of six ULX. We identify one as a supernovae, and the remainder as probable black hole X-ray binaries. All six are located in star formation regions, underlining the emerging link between ULX and active star formation activity.
Although ultra-luminous X-ray sources (ULX) are important for astrophysics due to their extreme apparent super-Eddington luminosities, their nature is still poorly known. Theoretical and observational studies suggest that ULXs could be a diversified group of objects composed of low-mass X-ray binaries, high-mass X-ray binaries and marginally also systems containing intermediate-mass black holes, which is supported by their presence in a variety of environments. Observational data on the ULX donors could significantly boost our understanding of these systems, but only a few were detected. There are several candidates, mostly red supergiants (RSGs), but surveys are typically biased toward luminous near-infrared objects. Nevertheless, it is worth exploring if RSGs can be members of ULX binaries. In such systems matter accreted onto the compact body would have to be provided by the stellar wind of the companion, since a Roche-lobe overflow could be unstable for relevant mass-ratios. Here we present a comprehensive study of the evolution and population of wind-fed ULXs and provide a theoretical support for the link between RSGs and ULXs. Our estimated upper limit on contribution of wind-fed ULX to the overall ULX population is $sim75$--$96%$ for young ($<100$ Myr) star forming environments, $sim 49$--$87%$ for prolonged constant star formation (e.g., disk of Milky Way), and $lesssim1%$ for environments in which star formation ceased long time ($>2$ Gyr) ago. We show also that some wind-fed ULXs (up to $6%$) may evolve into merging double compact objects (DCOs), but typical systems are not viable progenitors of such binaries because of their large separations. We demonstrate that, the exclusion of wind-fed ULXs from population studies of ULXs, might have lead to systematical errors in their conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا