ﻻ يوجد ملخص باللغة العربية
We present models of turbulent mixing at the boundaries between hot (T~10^{6-7} K) and warm material (T~10^4 K) in the interstellar medium, using a three-dimensional magnetohydrodynamical code, with radiative cooling. The source of turbulence in our simulations is a Kelvin-Helmholtz instability, produced by shear between the two media. We found, that because the growth rate of the large scale modes in the instability is rather slow, it takes a significant amount of time (~1 Myr) for turbulence to produce effective mixing. We find that the total column densities of the highly ionized species (C IV, N V, and O VI) per interface (assuming ionization equilibrium) are similar to previous steady-state non-equilibrium ionization models, but grow slowly from log N ~10^{11} to a few 10^{12} cm^{-2} as the interface evolves. However, the column density ratios can differ significantly from previous estimates, with an order of magnitude variation in N(C IV)/N(O VI) as the mixing develops.
Radiative turbulent mixing layers should be ubiquitous in multi-phase gas with shear flow. They are a potentially attractive explanation for the high ions such as OVI seen in high velocity clouds and the circumgalactic medium (CGM) of galaxies. We pe
The space-borne missions have provided a wealth of highly accurate data. However, our inability to properly model the upper-most region of solar-like stars prevents us from making the best of these observations. This problem is called surface effect
We present a series of numerical simulations of the quiet Sun plasma threaded by magnetic fields that extend from the upper convection zone into the low corona. We discuss an efficient, simplified approximation to the physics of optically thick radia
The stationary condition (Hopf equation) for the ($n$+1) point correlation function of a passive scalar advected by turbulent flow is argued to have an approximate $SL(n, R)$ symmetry which provides a starting point for the perturbative treatment of
Turbulent spectra of magnetic fluctuations in the free solar wind are studied from MHD to electron scales using Cluster observations. We discuss the problem of the instrumental noise and its influence on the measurements at the electron scales. We co