ﻻ يوجد ملخص باللغة العربية
We present the results of detailed N-body simulations regarding the interaction of four massive globular clusters in the central region of a triaxial galaxy. The systems undergo a full merging event, producing a sort of Super Star Cluster (SSC) whose features are close to those of a superposition of the individual initial mergers. In contrast with other similar simulations, the resulting SSC structural parameters are located along the observed scaling relations of globular clusters. These findings seem to support the idea that a massive SSC may have formed in early phases of the mother galaxy evolution and contributed to the growth of a massive nucleus.
In this paper we present the results of two detailed N-body simulations of the interaction of a sample of four massive globular clusters in the inner region of a triaxial galaxy. A full merging of the clusters takes place, leading to a slowly evolvin
The main topic of this paper is the investigation of the modes of interaction of globular clusters (GCs) moving in the inner part of a galaxy. This is tackled by means of high-resolution N-body simulations, whose first results are presented in this a
We present results of fully self-consistent N-body simulations of the motion of four globular clusters moving in the inner region of their parent galaxy. With regard to previous simplified simulations, we confirm merging and formation of an almost st
Nine presently known young Galactic globular clusters, which have ages / 3 Gyr smaller than the oldest clusters of similar metallicity, all have RGC > 15 kpc. Furthermore these young globulars are found to have below-average luminosities. These resul
(Abridged) Using luminosities and structural parameters of globular clusters (GCs) in the nuclear regions (nGCs) of low-mass dwarf galaxies from HST/ACS imaging we derive the present-day escape velocities (v_esc) of stellar ejecta to reach the cluste