ﻻ يوجد ملخص باللغة العربية
We study the self-similar collapse of an isothermal magnetized rotating cloud in the ideal magnetohydrodynamic (MHD) regime. In the limit of small distance from the accreting protostar we find an analytic solution that corresponds to free-fall onto a central mass point. The density distribution is not spherically symmetric but depends on the mass loading of magnetic field lines, which can be obtained by matching our inner solution to an outer collapse solution previously computed by Allen, Shu & Li. The concentration of magnetic field trapped by the central mass point under field-freezing, independent on the details of the starting state, creates a split monopole configuration where the magnetic field strength increases as the inverse square of the distance from the center. Under such conditions, the inflow eventually becomes subalfvenic and the outward transfer of angular momentum by magnetic braking very efficient, thus preventing the formation of a centrifugally supported disk. Instead, the azimuthal velocity of the infalling gas decreases to zero at the center, and the gas spirals into the star. Therefore, the dissipation of dynamically important levels of magnetic field is a fundamental requisite for the formation of protoplanetary disks around young stars.
We formulate the problem of magnetic field dissipation during the accretion phase of low-mass star formation, and we carry out the first step of an iterative solution procedure by assuming that the gas is in free-fall along radial field lines. This s
We discuss the effects of the magnetic field observed in molecular clouds on the process of star formation, concentrating on the phase of gravitational collapse of low-mass dense cores, cradles of sunlike stars. We summarize recent analytic work and
In this paper, we revisit the governing equations for linear magnetohydrodynamic (MHD) waves and instabilities existing within a magnetized, plane-parallel, self-gravitating slab. Our approach allows for fully non-uniformly magnetized slabs, which de
We examine the dynamics of a self--gravitating magnetized electron gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general and appropriate and physically motivated initial conditions, we transform Ein
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete se