ترغب بنشر مسار تعليمي؟ اضغط هنا

SiO in C-rich circumstellar envelopes of AGB stars: effects of non-LTE chemistry and grain adsorption

86   0   0.0 ( 0 )
 نشر من قبل Fredrik Schoeier
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New SiO multi-transition millimetre line observations of a sample of carbon stars, including J=8-7 observations with the APEX telescope, are used to probe the role of non-equilibrium chemistry and the influence of grains in circumstellar envelopes of carbon stars. A detailed radiative transfer modelling, including the effect of dust emission in the excitation analysis, of the observed SiO line emission is performed. A combination of low- and high-energy lines are important in constraining the abundance distribution. It is found that the fractional abundance of SiO in these C-rich environments can be several orders of magnitude higher than predicted by equilibrium stellar atmosphere chemistry. In fact, the SiO abundance distribution of carbon stars closely mimic that of M-type (O-rich) AGB stars. A possible explanation for this behaviour is a shock-induced chemistry, but also the influence of dust grains, both as a source for depletion as well as production of SiO, needs to be further investigated. As observed for M-type AGB stars, a clear trend that the SiO fractional abundance decreases as the mass-loss rate of the star increases is found for the carbon stars. This indicates that SiO is accreted onto dust grains in the circumstellar envelopes.

قيم البحث

اقرأ أيضاً

(abridged) Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. We have analysed molecular transitions of CO, SiO, and HCN measured with the AP EX telescope and all three instruments on the Herschel Space Observatory, together with literature data. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We have performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the outflow probed by our molecular data. For SiO, we find that the initial abundance lies between $5.5 times 10^{-5}$ and $6.0 times 10^{-5}$ w.r.t. H$_2$. The abundance profile is constant up to $60 pm 10 R_*$, after which it declines following a Gaussian profile with an $e$-folding radius of $3.5 pm 0.5 times 10^{13}$ cm. For HCN, we find an initial abundance of $5.0 times 10^{-7}$ w.r.t. H$_2$. The Gaussian profile that describes the decline starts at the stellar surface and has an $e$-folding radius $r_e$ of $1.85 pm 0.05 times 10^{15}$ cm. We cannot to unambiguously identify the mechanism by which SiO is destroyed at $60 pm 10 R_*$. The initial abundances found are larger than previously determined (except for one previous study on SiO), which might be due to the inclusion of higher-$J$ transitions. The difference in abundance for SiO and HCN compared to high mass-loss rate Mira star IK Tau might be due to different pulsation characteristics of the central star and/or a difference in dust condensation physics.
For the first time we explore the circumstellar effects on the Rb (and Zr) abundance determination in O-rich asymptotic giant branch (AGB) stars by considering the presence of a gaseous circumstellar envelope with a radial wind. A modified version of the spectral synthesis code Turbospectrum was used to deal with extended atmosphere models and velocity fields. The Rb and Zr abundances were determined from the resonant 7800A Rb I line and the 6474A ZrO bandhead, respectively, in five representative O-rich AGB stars with different expansion velocity and metallicity. By using our new dynamical models, the Rb I line profile (photospheric and circumstellar components) is very well reproduced. Interestingly, the derived Rb abundances are much lower (by 1-2 dex) in those O-rich AGB stars showing the higher circumstellar expansion velocities. The Zr abundances, however, remain close to the solar values. The Rb abundances and Rb/Zr ratios derived here significantly alleviate the problem of the present mismatch between the observations of intermediate-mass (4-8 solar masses) Rb-rich AGB stars and the AGB nucleosynthesis theoretical predictions.
We have performed high spatial resolution observations of SiO line emission for a sample of 11 AGB stars using the ATCA, VLA and SMA interferometers. Detailed radiative transfer modelling suggests that there are steep chemical gradients of SiO in the ir circumstellar envelopes. The emerging picture is one where the radial SiO abundance distribution starts at an initial high abundance, in the case of M-stars consistent with LTE chemistry, that drastically decreases at a radius of ~1E15 cm. This is consistent with a scenario where SiO freezes out onto dust grains. The region of the wind with low abundance is much more extended, typically ~1E16 cm, and limited by photodissociation. The surpisingly high SiO abundances found in carbon stars requires non-equilibrium chemical processes.
We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our rec ent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the TP-AGB, for which we compute spectra and colors. Then we compare our modeled colors in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduces several colors in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colors greater than two magnitudes in some cases. We conclude that the complete set of observed NIR and MIR colors are best reproduced by small grains, with sizes between $sim$0.035 and $sim$0.12~$mu$m, rather than by large grains between $sim0.2$ and $0.7$~$mu$m. The inability of large grains to reproduce NIR and MIR colors seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.
We previously explored the circumstellar effects on the Rb and Zr abundances in massive Galactic O-rich AGB stars. Here we are interested in the role of the extended atmosphere in the case of Li and Ca. Li is an important indicator of HBB while the t otal Ca in these stars could be affected by neutron captures. The Li abundances were previously studied with hydrostatic models, while the Ca abundances have been determined for the first time. We use a modified version of Turbospectrum and consider the presence of a gaseous circumstellar envelope and radial wind. The new Li abundances derived with the pseudo-dynamical models are very similar to those obtained from hydrostatic models (the average difference is 0.18 dex), with no difference for Ca. The Li and Ca content in these stars is only slightly affected by the presence of a circumstellar envelope. We also found that the Li I and Ca I line profiles are not very sensitive to variations of the model wind parameters. The new Li abundances confirm the Li-rich nature of the sample stars, supporting the activation of HBB in massive Galactic AGB stars. This is in good agreement with the theoretical predictions for solar metallicity AGB models from ATON, Monash, and NuGrid/MESA but is at odds with the FRUITY database, which predicts no HBB leading to the production of Li. Most sample stars display nearly solar Ca abundances that are consistent with the available s-process nucleosynthesis models for solar metallicity massive AGB stars, which predict overproduction of 46Ca relatively to the other Ca isotope and the creation of the radiactive isotope 41Ca but no change in the total Ca abundance. A minority of the stars seem to show a significant Ca depletion (by up to 1.0 dex). Possible explanations are offered to explain their apparent and unexpected Ca depletion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا