ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Cosmological Hubble Diagram for Type II-P Supernovae

87   0   0.0 ( 0 )
 نشر من قبل Peter Nugent
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Peter Nugent




اسأل ChatGPT حول البحث

We present the first high-redshift Hubble diagram for Type II-P supernovae (SNe II-P) based upon five events at redshift up to z~0.3. This diagram was constructed using photometry from the Canada-France-Hawaii Telescope Supernova Legacy Survey and absorption line spectroscopy from the Keck observatory. The method used to measure distances to these supernovae is based on recent work by Hamuy & Pinto (2002) and exploits a correlation between the absolute brightness of SNe II-P and the expansion velocities derived from the minimum of the Fe II 516.9 nm P-Cygni feature observed during the plateau phases. We present three refinements to this method which significantly improve the practicality of measuring the distances of SNe II-P at cosmologically interesting redshifts. These are an extinction correction measurement based on the V-I colors at day 50, a cross-correlation measurement for the expansion velocity and the ability to extrapolate such velocities accurately over almost the entire plateau phase. We apply this revised method to our dataset of high-redshift SNe II-P and find that the resulting Hubble diagram has a scatter of only 0.26 magnitudes, thus demonstrating the feasibility of measuring the expansion history, with present facilities, using a method independent of that based upon supernovae of Type Ia.

قيم البحث

اقرأ أيضاً

We present a Hubble diagram of type II supernovae using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I (CSP) for which optical and near-infrared light -curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the $V$ band and the second a colour term. We obtain a dispersion of 0.44 mag using a combination of the $(V-i)$ colour and the $r$ band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric colour method (PCM) with the standardised candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag which compares with 0.43 mag from the PCM, for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow-up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data.
We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 < z < 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed SN II-P is PS1-13bni (z = 0.335 +0.009 -0.012), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe II 5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe II 5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions.
The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a Cosmology sample of $sim100$ Type Ia supernovae located in the smooth Hubble flow ($0.03 lesssim z lesssim 0.10$). L ight curves were also obtained of a Physics sample composed of 90 nearby Type Ia supernovae at $z leq 0.04$ selected for near-infrared spectroscopic time-series observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.
Progressive increases in the precision of the Hubble-constant measurement via Cepheid-calibrated Type Ia supernovae (SNe Ia) have shown a discrepancy of $sim 4.4sigma$ with the current value inferred from Planck satellite measurements of the cosmic m icrowave background radiation and the standard $Lambda$CDM cosmological model. This disagreement does not appear to be due to known systematic errors and may therefore be hinting at new fundamental physics. Although all of the current techniques have their own merits, further improvement in constraining the Hubble constant requires the development of as many independent methods as possible. In this work, we use SNe II as standardisable candles to obtain an independent measurement of the Hubble constant. Using 7 SNe II with host-galaxy distances measured from Cepheid variables or the tip of the red giant branch, we derive H$_0= 75.8^{+5.2}_{-4.9}$ km s$^{-1}$ Mpc$^{-1}$ (statistical errors only). Our value favours that obtained from the conventional distance ladder (Cepheids + SNe Ia) and exhibits a difference of 8.4 km s$^{-1}$ Mpc$^{-1}$ from the Planck $+Lambda$CDM value. Adding an estimate of the systematic errors (2.8 km s$^{-1}$ Mpc$^{-1}$) changes the $sim 1.7sigma$ discrepancy with Planck $+Lambda$CDM to $sim 1.4sigma$. Including the systematic errors and performing a bootstrap simulation, we confirm that the local H$_0$ value exceeds the value from the early Universe with a confidence level of 95%. As in this work we only exchange SNe II for SNe Ia to measure extragalactic distances, we demonstrate that there is no evidence that SNe Ia are the source of the H$_0$ tension.
(Abridged) We present new results on the Hubble diagram of distant type Ia supernovae (SNe Ia) segregated according to the type of host galaxy. This makes it possible to check earlier evidence for a cosmological constant by explicitly comparing SNe r esiding in galaxies likely to contain negligible dust with the larger sample. The cosmological parameters derived from these SNe Ia hosted by presumed dust-free early-type galaxies supports earlier claims for a cosmological constant, which we demonstrate at 5 sigma significance, and the internal extinction implied is small even for late-type systems (A_B<0.2). Thus, our data demonstrate that host galaxy extinction is unlikely to systematically dim distant SNe Ia in a manner that would produce a spurious cosmological constant. We classify the host galaxies of 39 distant SNe discovered by the Supernova Cosmology Project (SCP) using the combination of HST STIS imaging, Keck ESI spectroscopy and ground-based broad-band photometry. We compare with a low-redshift sample of 25 SNe Ia. The scatter observed in the SNe Ia Hubble diagrams correlates closely with host galaxy morphology. We find the scatter in the SNe Ia Hubble diagram is smallest for SNe occurring in early-type hosts and largest for those occurring in late-type galaxies. Moreover, SNe residing in early-type hosts appear only ~0.14+/-0.09 mag brighter in their light-curve-width-corrected luminosity than those in late-type hosts, implying only a modest amount of dust extinction even in the late-type systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا