ﻻ يوجد ملخص باللغة العربية
Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes - analogues of GRBs, but with lower luminosities and fewer gamma-rays - can also be associated with supernovae, and whether they are intrinsically weak events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.
We have studied the afterglow of the gamma-ray burst (GRB) of February 18, 2006. This is a nearby long GRB, with a very low peak energy, and is therefore classified as an X-ray Flash (XRF). XRF 060218 is clearly associated with a supernova -- dubbed
The X-Ray Flash (XRF), 031203 with a host galaxy at z=0.1055, is, apart from GRB980425, the closest Gamma-Ray Burst (GRB) or XRF known to date. We monitored its host galaxy from 1-100 days after the burst. In spite of the high extinction to the sourc
We present ground-based and Hubble Space Telescope optical observations of the X-ray flash (XRF) 020903, covering 300 days. The afterglow showed a very rapid rise in the first day, followed by a relatively slow decay in the next few days. There was a
A long X-ray flash was detected and localized by the instruments aboard the High Energy Transient Explorer II (HETE-2) at 00:03:30 UT on 2004 September 16. The position was reported to the GRB Coordinates Network (GCN) approximately 2 hours after the
Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosion resulting from the collapse of very massive stars (about 40Mo, where Mo is the mass of the Sun) stripped of their outher hydrogen and helium envelopes. A ve