ﻻ يوجد ملخص باللغة العربية
Vega, the second brightest star in the northern hemisphere, serves as a primary spectral type standard. While its spectrum is dominated by broad hydrogen lines, the narrower lines of the heavy elements suggested slow to moderate rotation, giving confidence that the ground-based calibration of its visibile spectrum could be safely extrapolated into the ultraviolet and near-infrared (through atmosphere models), where it also serves as the primary photometric calibrator. But there have been problems: the star is too bright compared to its peers and it has unusually shaped absorption line profiles, leading some to suggest that it is a distorted, rapidly rotating star seen pole-on. Here we report optical interferometric observations of Vega which detect the asymmetric brightness distribution of the bright, slightly offset polar axis of a star rotating at 93% of breakup speed. In addition to explaining the unusual brightness and line shape pecularities, this result leads to the prediction of an excess of near-infrared emission compared to the visible, in agreement with observations. The large temperature differences predicted across its surface call into question composition determinations, adding uncertainty to Vegas age and opening the possibility that its debris disk could be substantially older than previously thought.
Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar cor
The radio spectra of main-sequence stars remain largely unconstrained due to the lack of observational data to inform stellar atmosphere models. As such, the dominant emission mechanisms at long wavelengths, how they vary with spectral type, and how
Stellar rotation is a key in our understanding of both mass-loss and evolution of intermediate and massive stars. It can lead to anisotropic mass-loss in the form of radiative wind or an excretion disk. We wished to spatially resolve the photosphere
This article reviews developments in the theory of rapidly rotating degenerate atomic gases. The main focus is on the equilibrium properties of a single component atomic Bose gas, which (at least at rest) forms a Bose-Einstein condensate. Rotation le
Using archival spectroscopic and photometric data, we searched for massive stars with Balmer-emission consistent with magnetically confined circumstellar material. HR 7355 is a formerly unknown He-strong star showing Balmer emission. At V=6.02 mag, i