ترغب بنشر مسار تعليمي؟ اضغط هنا

Opening a New Window to Fundamental Physics and Astrophysics: X-ray Polarimetry

74   0   0.0 ( 0 )
 نشر من قبل Paolo Soffitta
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Costa




اسأل ChatGPT حول البحث

An extensive theoretical literature predicts that X-ray Polarimetry can directly determine relevant physical and geometrical parameters of astrophysical sources, and discriminate between models further than allowed by spectral and timing data only. X-ray Polarimetry can also provide tests of Fundamental Physics. A high sensitivity polarimeter in the focal plane of a New Generation X-ray telescope could open this new window in the High Energy Sky.

قيم البحث

اقرأ أيضاً

LOFAR, the Low Frequency Array, is a next-generation radio telescope that is being built in Northern Europe and expected to be fully operational at the end of this decade. It will operate at frequencies from 15 to 240 MHz (corresponding to wavelength s of 20 to 1.2 m). Its superb sensitivity, high angular resolution, large field of view and flexible spectroscopic capabilities will represent a dramatic improvement over previous facilities at these wavelengths. As such, LOFAR will carry out a broad range of fundamental astrophysical studies. The design of LOFAR has been driven by four fundamental astrophysical applications: (i) The Epoch of Reionisation, (ii) Extragalactic Surveys and their exploitation to study the formation and evolution of clusters, galaxies and black holes, (iii) Transient Sources and their association with high energy objects such as gamma ray bursts, and (iv) Cosmic Ray showers and their exploitation to study the origin of ultra-high energy cosmic rays. In this conference the foreseen LOFAR work on the epoch of reionisation has been covered by de Bruyn and on cosmic ray showers by Falcke. During this contribution we will first present the LOFAR project with an emphasis on the challenges faced when carrying out sensitive imaging at low radio frequencies. Subsequently, we will discuss LOFARs capabilities to survey the low-frequency radio sky. Main aims for the planned surveys are studies of z>6 radio galaxies, diffuse emission associated with distant clusters and starbursting galaxies at z>2.
As the Cosmology and Fundamental Physics (CFP) panel is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of the early universe, the microwave background, the reionization and galaxy formation up to virialization of protogalaxies, large scale structure, the intergalactic medium, the determination of cosmological parameters, dark matter, dark energy, tests of gravity, astronomically determined physical constants, and high energy physics using astronomical messengers. Central to the progress in these areas are the corresponding advances in laboratory astrophysics which are required for fully realizing the CFP scientific opportunities within the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics which produce the observed astrophysical processes. The 5 areas of laboratory astrophysics which we have identified as relevant to the CFP panel are atomic, molecular, plasma, nuclear, and particle physics. Here, Section 2 describes some of the new scientific opportunities and compelling scientific themes which will be enabled by advances in laboratory astrophysics. In Section 3, we provide the scientific context for these opportunities. Section 4 briefly discusses some of the experimental and theoretical advances in laboratory astrophysics required to realize the CFP scientific opportunities of the next decade. As requested in the Call for White Papers, Section 5 presents four central questions and one area with unusual discovery potential. Lastly, we give a short postlude in Section 6.
The Gas Pixel Detector, recently developed and continuously improved by Pisa INFN in collaboration with IASF-Roma of INAF, can visualize the tracks produced within a low Z gas by photoelectrons of few keV. By reconstructing the impact point and the o riginal direction of the photoelectrons, the GPD can measure the linear polarization of X-rays, while preserving the information on the absorption point, the energy and the time of individual photons. Applied to X-ray Astrophysics, in the focus of grazing incidence telescopes, it can perform angular resolved polarimetry with a huge improvement of sensitivity, when compared with the conventional techniques of Bragg diffraction at 45 degrees and Compton scattering around 90 degrees. This configuration is the basis of POLARIX and HXMT, two pathfinder missions, and is included in the baseline design of IXO, the very large X-ray telescope under study by NASA, ESA and JAXA.
XEUS is a large area telescope aiming to rise X-ray Astronomy to the level of Optical Astronomy in terms of collecting areas. It will be based on two satellites, locked on a formation flight, one with the optics, one with the focal plane. The present design of the focal plane foresees, as an auxiliary instrument, the inclusion of a Polarimeter based on a Micropattern Chamber. We show how such a device is capable to solve open problems on many classes of High Energy Astrophysics objects and to use X-ray sources as a laboratory for a substantial progress on Fundamental Physics.
The announcement by the IceCube Collaboration of the observation of 28 cosmic neutrino candidates has been greeted with a great deal of justified excitement. The data reported so far depart by 4.3sigma from the expected atmospheric neutrino backgroun d, which raises the obvious question: Where in the Cosmos are these neutrinos coming from? We review the many possibilities which have been explored in the literature to address this question, including origins at either Galactic or extragalactic celestial objects. For completeness, we also briefly discuss new physics processes which may either explain or be constrained by IceCube data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا