ترغب بنشر مسار تعليمي؟ اضغط هنا

A Shot in the Dark: A Technique for Locating the Stellar Counterparts of Damped Lyman Alpha Absorbers

54   0   0.0 ( 0 )
 نشر من قبل John M. O'Meara
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present initial results from a Magellan telescope program to image galaxies that give rise to damped Lyman absorbers (DLAs) at 1.63 < z_DLA < 2.37. Our program differs from previous efforts in that we target quasars with intervening Lyman limit systems (LLS) along the line of sight at redshift z_LLS > 3.5. The higher-redshift LLS is applied as a blocking filter to remove the glare of the background quasar at the rest-frame ultraviolet wavelengths of the foreground galaxy. The complete absence of quasar light offers an unimpeded view along the sightline to the redshift of the LLS, allowing an exhaustive search for the DLA galaxy to the sensitivity limit of the imaging data (at or better than 0.25L*). In both of our pilot fields (PKS2000-330, z_DLA=2.033 and SDSS0322-0558, z_DLA=1.69), we identify an L* galaxy within 5 of the sightline which has optical colors consistent with star-forming galaxies at z~2. We examine the correlation between absorption-line properties and galaxy luminosity and impact distance, and compare the high-redshift galaxy and absorber pairs with those known at z<1.

قيم البحث

اقرأ أيضاً

116 - Kentaro Nagamine 2005
We present the results of a numerical study of a galactic wind model and its implications on the properties of damped Lyman-alpha absorbers (DLAs) using cosmological hydrodynamic simulations. We vary both the wind strength and the internal parameters of the the wind model in a series of cosmological SPH simulations that include radiative cooling and heating by a UV background, star formation, and feedback from supernovae and galactic winds. To test our simulations, we examine the DLA `rate-of-incidence as a function of halo mass, galaxy apparent magnitude, and impact parameter. We find that the statistical distribution of DLAs does not depend on the exact values of internal numerical parameters that control the decoupling of hydrodynamic forces when the gas is ejected from starforming regions. The DLA rate-of-incidence in our simulations at z=3 is dominated by the faint galaxies with apparent magnitude R_AB < 25.5. However, interestingly in a `strong wind run, the differential distribution of DLA sight-lines is peaked at Mhalo = 10^{12} Msun/h (R_AB~27), and the mean DLA halo mass is Mmean=10^{12.4} Msun/h (R_AB ~ 26). These mass-scales are much larger than those if we ignore winds, because galactic wind feedback suppresses the DLA cross section in low-mass halos and increases the relative contribution to the DLA incidence from more massive halos. The DLAs in our simulations are more compact than the present-day disk galaxies, and the impact parameter distribution is very narrow unless we limit the search for the host galaxy to only bright LBGs. The comoving number density of DLAs is higher than that of LBGs down to R_AB=30 mag if the physical radius of each DLA is smaller than 5 kpc/h_70. We discuss conflicts between current simulations and observations, and potential problems with simulations based on the CDM model.
85 - Nissim Kanekar 2017
We report Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet and Arecibo Telescope H{sc i} 21cm spectroscopic studies of six damped and sub-damped Lyman-$alpha$ absorbers (DLAs and sub-DLAs, respectively) at $z lesssim 0.1$, that have yielded estimates of their H{sc i} column density, metallicity and atomic gas mass. This significantly increases the number of DLAs with gas mass estimates, allowing the first comparison between the gas masses of DLAs and local galaxies. Including three absorbers from the literature, we obtain H{sc i} masses $approx (0.24 - 5.2) times 10^9 : {rm M}_odot$, lower than the knee of the local H{sc i} mass function. This implies that massive galaxies do not dominate the absorption cross-section for low-$z$ DLAs. We use Sloan Digital Sky Survey photometry and spectroscopy to identify the likely hosts of four absorbers, obtaining low stellar masses, $approx 10^7-10^{8.7} M_odot$, in all cases, consistent with the hosts being dwarf galaxies. We obtain high H{sc i} 21,cm or CO emission line widths, $Delta V_{20} approx 100-290$~km~s$^{-1}$, and high gas fractions, $f_{rm HI} approx 5-100$, suggesting that the absorber hosts are gas-rich galaxies with low star formation efficiencies. However, the H{sc i} 21,cm velocity spreads ($gtrsim 100$~km~s$^{-1}$) appear systematically larger than the velocity spreads in typical dwarf galaxies.
We have obtained high signal:to:noise optical spectroscopy at 5AA resolution of 27 quasars from the APM z$>$4 quasar survey. The spectra have been analyzed to create new samples of high redshift Lyman-limit and damped Lyman-$alpha$ absorbers. These d ata have been combined with published data sets in a study of the redshift evolution and the column density distribution function for absorbers with $log$N(HI)$ge17.5$, over the redshift range 0.01 $<$ z $<$ 5. The main results are: begin{itemize} item Lyman limit systems: The data are well fit by a power law $N(z) = N_0(1 + z)^{gamma}$ for the number density per unit redshift. For the first time intrinsic evolution is detected in the product of the absorption cross-section and comoving spatial number density for an $Omega = 1$ Universe. We find $gamma = 1.55$ ($gamma = 0.5$ for no evolution) and $N_0 = 0.27$ with $>$99.7% confidence limits for $gamma$ of 0.82 & 2.37. item Damped lya systems: The APM QSOs provide a substantial increase in the redshift path available for damped surveys for $z>3$. Eleven candidate and three confirmed damped Ly$alpha$ absorption systems, have been identified in the APM QSO spectra covering the redshift range $2.8le z le 4.4$ (11 with $z>3.5$). Combining the APM survey confirmed and candidate damped lya absorbers with previous surveys, we find evidence for a turnover at z$sim$3 or a flattening at z$sim$2 in the cosmological mass density of neutral gas, $Omega_g$. end{itemize} The Lyman limit survey results are published in Storrie-Lombardi, et~al., 1994, ApJ, 427, L13. Here we describe the results for the DLA population of absorbers.
76 - Sungryong Hong 2010
The kinematics of damped Lyman alpha absorbers (DLAs) are difficult to reproduce in hierarchical galaxy formation models, particularly the preponderance of wide systems. We investigate DLA kinematics at z=3 using high-resolution cosmological hydrodyn amical simulations that include a heuristic model for galactic outflows. Without outflows, our simulations fail to yield enough wide DLAs, as in previous studies. With outflows, predicted DLA kinematics are in much better agreement with observations. Comparing two outflow models, we find that a model based on momentum-driven wind scalings provides the best match to the observed DLA kinematic statistics of Prochaska & Wolfe. In this model, DLAs typically arise a few kpc away from galaxies that would be identified in emission. Narrow DLAs can arise from any halo and galaxy mass, but wide ones only arise in halos with mass >10^11 Mo, from either large central or small satellite galaxies. This implies that the success of this outflow model originates from being most efficient at pushing gas out from small satellite galaxies living in larger halos. This increases the cross-section for large halos relative to smaller ones, thereby yielding wider kinematics. Our simulations do not include radiative transfer effects or detailed metal tracking, and outflows are modeled heuristically, but they strongly suggest that galactic outflows are central to understanding DLA kinematics. An interesting consequence is that DLA kinematics may place constraints on the nature and efficiency of gas ejection from high-z galaxies.
54 - S. J. Curran 2002
We have used the SEST 15-metre and Onsala 20-metre telescopes to perform deep (r.m.s. >~ 30 mJy) integrations of various molecular rotational transitions towards damped Lyman-alpha absorption systems (DLAs) known to occult millimetre-loud quasars. We have observed 6 new systems and improved the existing limits for 11 transitions. These limits may be approaching the sensitivities required to detect new systems and we present a small number of candidate systems which we believe warrant further observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا